Những câu hỏi liên quan
NT
Xem chi tiết
NH
9 tháng 12 2024 lúc 6:25

Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.

Cảm ơn các em đã đồng hành cùng Olm.                        

Bình luận (0)
PD
Xem chi tiết
B8
28 tháng 2 2016 lúc 18:26

ta có \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)

=>\(\frac{x+y+z}{2x+2y+2z+1+1-2}=x+y+z\)

=>\(\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=>\(\frac{1}{2}=x+y+z\)

Bình luận (0)
HS
Xem chi tiết
H24
Xem chi tiết
NT
21 tháng 9 2023 lúc 4:57

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

Bình luận (0)
T2
Xem chi tiết
PM
20 tháng 7 2019 lúc 10:09

Ta có: x(x+y+z)=(-5) (1)

y(x+y+z)=9 (2)

z(x+y+z)=5 (3)

\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)

\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)

+ Với x+y+z=3 thì:

Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)

Từ (2) và (4) \(\Rightarrow\) y=3

Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)

+ Với x+y+z=-3

Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)

Từ (2) và (5) \(\Rightarrow y=-3\)

Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)

Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)

Bình luận (0)
PA
Xem chi tiết
NT
14 tháng 7 2021 lúc 14:54

Đề sai rồi bạn nhé

Bình luận (0)
SI
14 tháng 7 2021 lúc 14:55

2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai  ucche

Bình luận (0)
NT
14 tháng 7 2021 lúc 14:55

Sửa đề: x+y+z=10

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y+z=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{10}{10}=1\)

Do đó: x=2; y=3; z=5

Bình luận (0)
PH
Xem chi tiết
MH
15 tháng 4 2022 lúc 20:44

a) \(4x-2=x\)

\(4x-x=2\)

\(3x=2\)

\(x=\dfrac{2}{3}\)

b) Thay \(x=1,y=3\) ta có \(3=a.1\Rightarrow a=3\)

Vậy hàm số cần tìm là \(y=3x\)

c) Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180}{6}=30\)

\(\Rightarrow\left\{{}\begin{matrix}x=30\times1=30\\y=30\times2=60\\z=30\times3=90\end{matrix}\right.\)

Bình luận (0)
TH
Xem chi tiết
LT
Xem chi tiết
H9
13 tháng 1 2024 lúc 19:16

Đặt: \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-2}=k\)

\(\Rightarrow x=3k;y=2k;z=-2k\) 

Ta có: \(x^2+3y^2-z^2=17\)

\(\Rightarrow\left(3k\right)^2+3\cdot\left(2k\right)^2-\left(-2k\right)^2=17\)

\(\Rightarrow9k^2+3\cdot4k^2-4k^2=17\)

\(\Rightarrow17k^2=17\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

Khi k = 1 thì:

\(\left\{{}\begin{matrix}x=3\\y=2\\z=-2\end{matrix}\right.\)

Khi k = -1 thì: 

\(\left\{{}\begin{matrix}x=-3\\y=-2\\z=2\end{matrix}\right.\)

Bình luận (0)
DN
Xem chi tiết