Những câu hỏi liên quan
DJ
Xem chi tiết
TN
Xem chi tiết
NT
29 tháng 5 2022 lúc 0:47

a: \(A=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)

Dấu '=' xảy ra khi x=1 và y=-2

b: \(B=x^2-4x+4+y^2-8y+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)

Dấu '=' xảy ra khi x=2 và y=4

Bình luận (0)
NL
Xem chi tiết
HL
Xem chi tiết
NK
Xem chi tiết
NL
10 tháng 10 2020 lúc 23:59

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 10 2020 lúc 23:59

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
VL
Xem chi tiết
H24
14 tháng 6 2018 lúc 10:57

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

Bình luận (0)
H24
14 tháng 6 2018 lúc 11:03

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết