a) cho biểu thức sau : 9+2xy^2 ; 5 xy^2z^5; -7,5;x^5-1
tìm cái đơn thức trong các biểu thức trên
tìm bậc của mỗi đơn thức
b) cho hai đơn thức sau 2/3x^3y và -3x^2y^5
Tính tích của hai đơn thức trên
tính giá trị của hai tích trên tại x=1 ; y=-1
rút gọn các biểu thức sau:
a) (x+3).(x^2-3x+9)-(54+x^3)
b)(2x+y).(4x^2-2xy+y^2)-(2x-y).(4x^2+2xy+y^2)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(2x+y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2+4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(8x^2+2y^2\right)\)
\(=\left(2x+y\right)\left(4x+y\right).2xy\)
viết các biểu thức toán học sau đây thành biểu thức trong ngôn ngữ c++
a,5x2-6x+1
b,(2xy+1)(2xy-1)
c,x-1/x+1
d,a/a+1 +(A-1)2 /a+2
a. 5*x*x-6*x+1
b. (2*x*y+1)*(2*x*y-1)
c. (x-1)/(x+1)
d. a/(a+1)+((a-1)*(a-1))/(a+2)
tính giá trị của biểu thức sau
A = 2 : x tại x = 0
rút gọn biểu thức sau
2xy : 2y
A = 2 : x
Thay x = 0 vào biểu thức, ta được:
A = 2 : 0
A = 0
2xy : 2y
= ( 2y : 2y ) . ( x : 1 )
= x
Cho biểu thức M=\(x^3+3xy^2-2xy+x^3-xy-2xy^2+1\)
a) thu gọn biểu thức M
b) tính giá trị biểu thức khi x=-1 ; y=2
a, \(M=2x^3+xy^2-3xy+1\)
b, Thay x = -1 ; y = 2 ta được
M = -2 - 2 + 6 + 1 = 3
cho các biểu thức sau
A = 2xy mũ 3 - 3xy mũ 2 + 4xy mũ 2
B = [1/3xy][-1/2x mũ 2 z ]y
C = 0,1xy mũ 2 - 0,01 [xy]y
D = [1/2xy mũ 2 ] [1/5xz] y
a] biểu thức nào là đơn thức ?
b] thu gọn và tìm bậc của kết quả .
c] chỉ ra các đơn thức đồng dạng với nhau
đ] tính giá trị biểu thức tại x= -6 , y= -1 , z= -1
16y^2+2yz+40y+5z=
Tìm giá trị nhỏ nhất của biểu thức sau:
A=2x^2-6x-2xy+y^2+10
Tìm giá trị lớn nhất của biểu thức sau:
A=5+2xy+14y-x^2-5y^2-2x
1. \(A=2x^2-6x-2xy+y^2+10\)
\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\) ; \(\left(x-3\right)^2\ge0\)\(\forall x;y\)
\(\Rightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=3\)
Vậy minA = 1 \(\Leftrightarrow x=y=3\)
2. \(A=5+2xy+14y-x^2-5y^2-2x\)
\(\Leftrightarrow A=-\left(x^2-2xy+y^2+2x-2y+1\right)-\left(4y^2-12y+9\right)+15\)
\(\Leftrightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)
Vì \(\left\{{}\begin{matrix}\left(x-y+1\right)^2\ge0\\\left(2y-3\right)^2\ge0\end{matrix}\right.\)\(\forall x;y\)
\(\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(2y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
Vậy maxA = 15 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
1. A=2x2−6x−2xy+y2+10A=2x2−6x−2xy+y2+10
⇔A=(x2−2xy+y2)+(x2−6x+9)+1⇔A=(x2−2xy+y2)+(x2−6x+9)+1
⇔A=(x−y)2+(x−3)2+1⇔A=(x−y)2+(x−3)2+1
Vì (x−y)2≥0(x−y)2≥0 ; (x−3)2≥0(x−3)2≥0∀x;y∀x;y
⇒A=(x−y)2+(x−3)2+1≥1⇒A=(x−y)2+(x−3)2+1≥1
Dấu "=" xảy ra ⇔{(x−y)2=0(x−3)2=0⇔x=y=3⇔{(x−y)2=0(x−3)2=0⇔x=y=3
Vậy minA = 1 ⇔x=y=3⇔x=y=3
2. A=5+2xy+14y−x2−5y2−2xA=5+2xy+14y−x2−5y2−2x
⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15
⇔A=−(x−y+1)2−(2y−3)2+15⇔A=−(x−y+1)2−(2y−3)2+15
Vì {(x−y+1)2≥0(2y−3)2≥0{(x−y+1)2≥0(2y−3)2≥0∀x;y∀x;y
⇒A=−(x−y+1)2−(2y−3)2+15≤15⇒A=−(x−y+1)2−(2y−3)2+15≤15
Dấu "=" xảy ra ⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32
Vậy maxA = 15 ⇔{x=12y=32
rút gọn biểu thức
a)(x+3)(X^2-3x+9)-(54+x^3)
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
=-27
Rút gọn các biểu thức sau:
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
= ( x + 3)(x2 – 3.x + 32) – (54 + x3)
= x3 + 33 – (54 + x3)
= x3 + 27 – 54 – x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]
= [(2x)3 + y3] – [(2x)3 – y3]
= (2x)3 + y3 – (2x)3 + y3
= 2y3
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
= ( x + 3)(x2 – 3.x + 32) – (54 + x3)
= x3 + 33 – (54 + x3) = x3 + 27 – 54 – x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2x.y + y2] – (2x – y)[(2x)2 + 2x.y + y2]
= [(2x)3 + y3] – [(2x)3 – y3]
= (2x)3 + y3 – (2x)3 + y3
= 2y3
Rút gọn các biểu thức sau:
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
a ) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(5x+x^3\right)\)
\(=\left(x+3\right)\left(x^2-3x+3^2\right)-\left(54+x^3\right)\)
\(=x^3+3^3-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
\(=-27\)
b ) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2.x.y+y^2\right]-\left(2x-y\right)\left[\left(2x\right)^2+2.x.y+y^2\right]\)
\(=\left[\left(2x\right)^3+y^3\right]-\left[\left(2x\right)^3-y^3\right]\)
\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3\)
\(=2y^3\)
a ) (x+3)(x2−3x+9)−(5x+x3)(x+3)(x2−3x+9)−(5x+x3)
=(x+3)(x2−3x+32)−(54+x3)=(x+3)(x2−3x+32)−(54+x3)
=x3+33−(54+x3)=x3+33−(54+x3)
=x3+27−54−x3=x3+27−54−x3
=−27=−27
b ) (2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)(2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)
=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]
=[(2x)3+y3]−[(2x)3−y3]=[(2x)3+y3]−[(2x)3−y3]
=(2x)3+y3−(2x)3+y3=(2x)3+y3−(2x)3+y3
=2y3