Từ một điểm a ở bên ngoài đường tròn tâm O,kẻ hai tiếp tuyến AB,AC với đường tròn này
Từ một điểm A ở bên ngoài đường tròn tâm O, kẻ hai tiếp tuyến AB và AC với đường tròn tâm O (B và C là hai tiếp điểm). Vẽ BD song song với AC ( D thuộc đường tròn tâm O), AD cắt đường tròn O tại K. Tia BK cắt AC tại I. CMR: I là trung điểm của AC
Từ một điểm A ở ngoài đường tròn tâm O kẻ hai tiếp tuyến AB, AC với đường tròn này.
1) Chứng minh tứ giác ABOC nội tiếp đường tròn. Xác định tâm của đường tròn ngoại tiếp tứ giác ABOC
2) Gọi điểm D là trung điểm của AC, đoạn thẳng BD cắt đường tròn tâm O tại điểm E, AE cắt đường tròn tâm O tại điểm F Chứng minh AB2 = AE.AF
3) Gọi H là giao điểm của AO và BC. Chứng minh góc DHC = góc DEC
1: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
2: Xét ΔABE và ΔAFB có
góc ABE=góc AFB
góc BAE chung
=>ΔABE đồng dạng với ΔAFB
=>AB/AF=AE/AB
=>AB^2=AE*AF
Từ điểm A ở bên ngoài đường tròn tâm O kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Lấy điểm C thuộc đường tròn (O) sao cho AC=AB (C khác B). Vẽ đk BE
a. AC vuông góc với OC. Từ đó suy ra AC là tiếp tuyến của (O) b. OA song song với CE
c) Gọi H là hình chiếu vuông góc của điểm C trên BE và M là giao điểm của AE và CH. Chứng minh M là trung điểm vủa CH
a: Xét ΔOBA và ΔOCA có
OB=OC
BA=CA
OA chung
Do đó: ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó; ΔBCE vuông tại C
=>BC vuông góc với CE
AB=AC
OB=OC
=>AO là trung trực của BC
=>AO vuông góc với BC
=>AO//CE
Bài 4 : 3 điểm Cho đường tròn tâm O, từ điểm A nằm bên ngoài đường tròn ( O ), vẽ hai tiếp tuyến AB và AC với đường tròn ( B, C là hai tiếp điểm ). Kẻ dẫy CD song song với AB. Đường thẳng AD cắt AND đường tròn ( O ) tại E. a). Chứng minh tứ giác ABOC nội tiếp; b). Chứng tỏ A * B ^ 2 = AE . AD c). Chứng minh AOC =ACB V tilde a tam giác BDC cân
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB^2=AE*AD
Từ một điểm A ở bên ngoài đường tròn tâm O, kẻ hai tiếp tuyến AB và AC với đường tròn tâm O (B và C là hai tiếp điểm). Vẽ BD song song với AC ( D thuộc đường tròn tâm O), AD cắt đường tròn O tại K. Tia BK cắt AC tại I.
tứ giác ABOC nội tiếp đường tròn
IC.IC=IB.IK
tam giác BAI đồng dạng vs tam giác AKI
I là trung điểm của AC (mấy bn làm câu này giùm mik nha, mấy câu kia mik làm dk r)
Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E). a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh: OA BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA. c) Chứng minh BC trùng với tia phân giác của góc DHE. d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
mà OB=OD(=R)
nên \(OH\cdot OA=OD^2\)
=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
Xét ΔOHD và ΔODA có
\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
\(\widehat{HOD}\) chung
Do đó: ΔOHD đồng dạng với ΔODA
Bài 9 . Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).
a) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.
b) Gọi H là giao điểm của AO với BC. Chứng minh: OAvuông góc BC và
OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA.
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
mà OB=OD(=R)
nên \(OH\cdot OA=OD^2\)
=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
Xét ΔOHD và ΔODA có
\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
\(\widehat{HOD}\) chung
Do đó: ΔOHD đồng dạng với ΔODA
Cho 1 điểm M nằm bên ngoài đường tròn tâm (O) bán kính= 3 cm kẻ hai tiếp tuyến MN MB n p là hai tiếp điểm của đường tròn tâm (Ở) vẽ các tiếp tuyến của đường tròn tâm (O )sao cho đoạn AB = 3 cm với AB thuộc đường tròn tâm (O) A nằm giữa M và B. a,chứng minh tứ giác OPMN nội tiếp đường tròn b, gọi H là trung điểm của đường tròn OAB số sánh MON và MHN