Những câu hỏi liên quan
HV
Xem chi tiết
TM
Xem chi tiết
NT
21 tháng 6 2023 lúc 10:18

1: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

2: Xét ΔABE và ΔAFB có

góc ABE=góc AFB

góc BAE chung

=>ΔABE đồng dạng với ΔAFB

=>AB/AF=AE/AB

=>AB^2=AE*AF

 

Bình luận (0)
NA
Xem chi tiết
NT
17 tháng 1 2023 lúc 14:11

a: Xét ΔOBA và ΔOCA có

OB=OC

BA=CA

OA chung

Do đó: ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó; ΔBCE vuông tại C

=>BC vuông góc với CE

AB=AC

OB=OC

=>AO là trung trực của BC

=>AO vuông góc với BC

=>AO//CE

Bình luận (0)
QM
Xem chi tiết
VB
Xem chi tiết
NT
14 tháng 5 2023 lúc 13:35

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB^2=AE*AD

Bình luận (0)
HV
Xem chi tiết
NA
Xem chi tiết
NT
25 tháng 12 2023 lúc 13:34

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD(=R)

nên \(OH\cdot OA=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

Xét ΔOHD và ΔODA có

\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODA

Bình luận (0)
H24
Xem chi tiết
NT
31 tháng 12 2023 lúc 21:47

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD(=R)

nên \(OH\cdot OA=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

Xét ΔOHD và ΔODA có

\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODA

Bình luận (0)
LD
Xem chi tiết