Những câu hỏi liên quan
CN
Xem chi tiết
NT
Xem chi tiết
NH
11 tháng 2 2020 lúc 10:20

ĐKXĐ: \(-3\le x\le6\)

Gọi A là tên hàm số trên

\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)

\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)

\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
11 tháng 2 2020 lúc 10:24

Đặt A = \(\sqrt{x+3}+\sqrt{6-x}\) ĐKXĐ: \(-3\le x\le6\)

\(A^2=x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}\)

\(=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\ge9\)

\(\Rightarrow A\ge3\)

Vậy min A = 3 ⇔\(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)(thỏa mãn)

Mặt khác \(A^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\le9+x+3+6-x=18\)

\(\Rightarrow A\le3\sqrt{2}\)

Vậy maxA = \(3\sqrt{2}\)\(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)(thỏa mãn)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TL
4 tháng 9 2017 lúc 21:15

Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)

\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)

Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)

          \(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)

\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)

Vậy MaxA=1/8 khi x=8

Bình luận (0)
VC
4 tháng 9 2017 lúc 21:16

min trước nhé max mình đang nghĩ 

ta có 

ĐKXĐ \(x>=4\)

vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)

=> \(\frac{\sqrt{x-4}}{2x}>=0\)

dấu = xảy ra <=> x=4

Bình luận (0)
VC
4 tháng 9 2017 lúc 21:31

min của bạn long sai rồi A>=0 mà 

t acùng tìm max = cách khác nhé 

ta có \(A=\frac{\sqrt{x-4}}{2x}=\frac{4.\sqrt{x-4}}{8x}=\frac{x-\left(x-4\right)+4\sqrt{x-4}-4}{8x}\)

            \(=\frac{1}{8}-\frac{\left(\sqrt{x-4}-2\right)^2}{8x}\)

đến đây thì dễ rồi nhé A max=1/8<=> x=8

Bình luận (0)
NC
Xem chi tiết
BL
9 tháng 2 2020 lúc 18:40

+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)

\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)

\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)

\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)

\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)

max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)

+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)

\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)

\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)

\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)

Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
BN
Xem chi tiết
PN
9 tháng 8 2016 lúc 16:15

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

Bình luận (0)
ML
9 tháng 8 2016 lúc 17:49

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

Bình luận (0)
VT
Xem chi tiết
GP
Xem chi tiết
MS
9 tháng 11 2017 lúc 19:54

\(P=\dfrac{1}{2}+\sqrt{x}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra khi:\(x=0\)

\(Q=7-2\sqrt{x-1}\le7\)

Dấu "=" xảy ra khi:\(x=1\)

Bình luận (0)
LH
10 tháng 11 2017 lúc 20:07

Để P có GTNN => \(\sqrt{x}\) phải là số nhỏ nhất có thể.

\(\sqrt{x}\) nhỏ nhất <=> x là số tự nhiên nhỏ nhất

=> x = 0

Vậy GTNN của P = \(\dfrac{1}{2}+\sqrt{0}\) = \(\dfrac{1}{2}\)

Để Q có GTLN => \(\sqrt{x-1}\) phải là số nhỏ nhất có thể

\(\sqrt{x-1}\) nhỏ nhất <=> x-1 là số tự nhiên nhỏ nhất

=> x-1 = 0 => x = 1

Vậy GTLN của Q =\(7-2\sqrt{x-1}=7-2\sqrt{1-1}=7-2\sqrt{0}=7-2.0=7-0=7\)

Bình luận (0)
LH
11 tháng 11 2017 lúc 16:24

\(P=\dfrac{1}{2}+\sqrt{x}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra khi : \(x=0\)

\(Q=7-2\sqrt{x-1}\le7\)

Dấu "=" xảy ra khi : \(x=1\)

Bình luận (0)
VD
Xem chi tiết
VC
27 tháng 4 2018 lúc 23:23

1) Áp dụng BĐT bunhia, ta có 

\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)

Dấu = xảy ra <=> a=b=c=1/3

Bình luận (0)
PD
Xem chi tiết
HT
31 tháng 7 2018 lúc 17:02

hình như đề bài bị sai số thì phải bạn ạ

mình giải cứ bị lệch số ấy

Bình luận (0)