§1. Bất đẳng thức

NT

tìm GTNN và GTLN của hàm số sau

\(\sqrt{x+3}+\sqrt{6_{ }-x}\)

NH
11 tháng 2 2020 lúc 10:20

ĐKXĐ: \(-3\le x\le6\)

Gọi A là tên hàm số trên

\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)

\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)

\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
11 tháng 2 2020 lúc 10:24

Đặt A = \(\sqrt{x+3}+\sqrt{6-x}\) ĐKXĐ: \(-3\le x\le6\)

\(A^2=x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}\)

\(=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\ge9\)

\(\Rightarrow A\ge3\)

Vậy min A = 3 ⇔\(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)(thỏa mãn)

Mặt khác \(A^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\le9+x+3+6-x=18\)

\(\Rightarrow A\le3\sqrt{2}\)

Vậy maxA = \(3\sqrt{2}\)\(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)(thỏa mãn)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TB
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QA
Xem chi tiết
MA
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
DD
Xem chi tiết