Những câu hỏi liên quan
TS
Xem chi tiết
NM
19 tháng 10 2021 lúc 19:42

\(a,=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)

Bình luận (0)
KV
Xem chi tiết
KT
30 tháng 7 2018 lúc 20:09

\(2x^2+2y^2-x^2z+z-y^2z-2\)

\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)

\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)

\(=\left(2-z\right)\left(x^2+y^2-1\right)\)

Bình luận (0)
BT
30 tháng 7 2018 lúc 20:15

\(2x^2+2y^2-x^2z-y^2z-2=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)=\left(2-z\right)\left(x^2+y^2-1\right)\)

Bình luận (0)
TL
Xem chi tiết
NT
21 tháng 1 2022 lúc 20:16

b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
MN
2 tháng 8 2021 lúc 18:32

\(=3x\cdot\left(x-5y\right)+2y\cdot\left(x-5y\right)\)

\(=\left(x-5y\right)\left(3x+2y\right)\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 20:05

\(3x\left(x-5y\right)-2y\left(5y-x\right)\)

\(=3x\left(x-5y\right)+2y\left(x-5y\right)\)

\(=\left(x-5y\right)\left(3x+2y\right)\)

Bình luận (0)
TL
Xem chi tiết
NT
21 tháng 1 2022 lúc 12:50

\(=\dfrac{2\left(x-2y+z\right)^3+4\left(x-2y+z\right)^2}{2\left(x-2y+z\right)}=\left(x-2y+z\right)^2+2\left(x-2y+z\right)\)

Bình luận (2)
PT
Xem chi tiết
TA
30 tháng 7 2018 lúc 11:53

-[ ((x2)2+(y2)2+(z2)2-2x2y2-2x2z2+2y2z2)-4y2z2]

- ( (x2-y2-z2)2-(2yz)2)

-( x2-y2-z2-2yz )(x2-y2-z2+2yz)

Sai thì bảo mình đừng k sai a -)

Bình luận (0)
NA
30 tháng 7 2018 lúc 12:11

kết  quả là -(x^2-y^2-z^2)^2

Bình luận (0)
ST
30 tháng 7 2018 lúc 14:18

\(=4x^2z^2-\left(x^4+y^4+z^4-2x^2y^2+2x^2z^2-2y^2z^2\right)=4x^2z^2-\left(x^2-y^2+z^2\right)^2\)

\(=\left(2xz+x^2-y^2+z^2\right)\left(2xz-x^2+y^2-z^2\right)=\left[\left(x+z\right)^2-y^2\right]\left[y^2-\left(x-z\right)^2\right]\)

\(=\left(x+y+z\right)\left(x+y-z\right)\left(y+x-z\right)\left(y-x+z\right)\)

Bình luận (0)
An
Xem chi tiết
BQ
Xem chi tiết
LA
7 tháng 10 2017 lúc 21:53

Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:

\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)

\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)

\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)

\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)

Bình luận (0)