Tìm GTNN của biểu thức sau:
A= \(\frac{2005x+2006\sqrt{1-x^2}+2007}{\sqrt{1-x^2}}\)
Tìm GTNN của biểu thức \(P=\frac{2005x+2006\sqrt{1-x^2}+2007}{\sqrt{1-x^2}}\)
Giúp với
\(P=\frac{2005x+2006\sqrt{1-x^2}+2007}{\sqrt{1-x^2}}\)
\(=\frac{2006\left(1+x\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2006\)
\(\ge\frac{2\sqrt{2006\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2006=2\sqrt{2006}+2006\)
Dấu = xảy ra khi:
\(2006\left(1+x\right)=1-x\)
\(\Leftrightarrow x=-\frac{2005}{2007}\)
Cho các biểu thức sau:
A = \(\dfrac{x+3}{\sqrt{x}+1}\) và B = \(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{2\sqrt{x}}{1-x}\) với \(x\ge0;x\ne1\)
a) Rút gọn các biểu thức B
b) Cho \(P=B:A\). Với \(x>1\), tìm GTNN của biểu thức \(\dfrac{1}{P}\)
a.
\(B=\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)+2\sqrt{x}}{1-x}=\dfrac{\sqrt{x}+1+x-\sqrt{x}+2\sqrt{x}}{1-x}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(P=\dfrac{B}{A}=\dfrac{x+3}{\sqrt{x}+1}:\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(x+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{x+3}{\sqrt{x}-1}=\dfrac{x-1+4}{\sqrt{x}-1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}-1}\)\(=\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}+2\)
Theo BĐT AM - GM ta có: \(\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right)\dfrac{4}{\sqrt{x}-1}}=4\)
\(\Rightarrow\dfrac{1}{P}\ge6\Rightarrow Min_{\dfrac{1}{P}}=6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=4\Rightarrow x=9\) (loại trường hợp \(\sqrt{x}-1=-2\))
Vậy GTNN của biểu thức \(\dfrac{1}{P}=6\) khi x = 9.
Cho các biểu thức sau:
A = \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức \(M=\dfrac{A}{B}\)
b) Tìm GTNN của biểu thức M
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tìm GTNN của biểu thức
P= \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{x^2-\sqrt{x}-2x\sqrt{x}+2x}{x-\sqrt{x}+1}=\frac{\left(x-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}=x-\sqrt{x}\)
\(=\left(x-\frac{2\sqrt{x}}{2}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(\frac{-1}{4}\)đạt được khi x = \(\frac{1}{4}\)
Cho biểu thức
A=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}-\frac{\sqrt{x}+1}{\sqrt{x}+1}\)
a) Rút gọn biểu thức
b)Tìm GTNN của A
ai giải jup mik
cho biểu thức B= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\div\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\)
a) rút gọn biểu thức B
b) tìm x đề B>2 c) tìm GTNN của \(\sqrt{B}\)
Cho biểu thức ; \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
1, Rút gọn
2, Tìm m để \(mA=\sqrt{x}-2\)có hai nghiệm phân biệt
3, Tìm GTNN của biểu thức A
tìm GTNN của biểu thức \(\frac{-8\sqrt{x}-3}{4x-1}\)
so sánh biểu thức \(\frac{\sqrt{x}}{x+\sqrt{x}+1}với\frac{1}{3}\)
so sánh \(\frac{2\sqrt{x}-2}{4x}với\frac{1}{2}\)