Cho 6 số nguyên dương a < b < c <d<m<n.Chứng minh rằng:
\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
a) tìm số nguyên dương a sao cho a2017+a2015+1 là số nguyên tố
b) với a,b là các số nguyên dương sao cho a+1 và b+2013 chia hết cho 6 . C/m an+a+b chia hết cho 6
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
cho a;b;c là các số nguyên dương .Chứng tỏ [ a+b]/c+ [ b+c ] /a+ [c+a ]/b >hoăc =6
cho các số nguyên dương a,b,c thỏa mãn a^3 + b^3 + c^3 = 6(a + b + c). Tìm giá trị nhỏ nhất của tổng a + b+ c
Từ đề bài, a, b, c có giá trị là 1,2,3. Suy ra giá trị nhỏ nhất của tổng a+b+c= 1+2+3=6. Vậy giá trị nhỏ nhất của tổng a+b+c là 6.
Nhân hai số nguyên âm
1) tính :
a) 5.17
b) (-15).(-6)
2) cho a là một số nguyên dương . hỏi b là số nguyên dương hay số nguyên âm nếu :
a) tích a.b là một số nguyên dương ?
b) tích a.b là một số nguyên âm ?
1) tính :
a) 5.17=85
b) (-15).(-6)=90
2) cho a là một số nguyên dương . hỏi b là số nguyên dương hay số nguyên âm nếu :
a) tích a.b là một số nguyên dương =>b là số nguyên dương
b) tích a.b là một số nguyên âm => b là số nguyên âm
Cho 6 số nguyên dương a< b<c<d<m<n. Chứng minh rằng \(\dfrac{a+c+m+1}{a+b+c+d+m+n}\) < \(\dfrac{1}{2}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
Cho a^3+8b^3+27c^3=18abc với a, b, c là các số nguyên dương. Chứng minh a/6=b/3=c/2
a/ cho p là số nguyên tố ,p>3 và 10p+1 cũng là số nguyên tố
chứng tỏ rằng 5p+1 chia hết cho 6
b/ cho Q=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với a,b,c,là các số nguyên dương
cho 6 số nguyên dương phân biệt A B C D E F
tính tổng mỗi cặp số đó hỏi có bao nhiêu số nguyên tố
cho 6 số nguyên dương phân biệt A B C D E F
tính tổng mỗi cặp số đó hỏi có bao nhiêu số nguyên tố
cho 6 số nguyên dương a,b,c,d,m,n thỏa mãn:
a<b<c<d<m<n
chứng minh rằng \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)