Những câu hỏi liên quan
TD
Xem chi tiết
AH
6 tháng 1 2023 lúc 19:43

Lời giải:

$a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:

$a-b=b-c=c-a=0$

$\Rightarrow a=b=c$

$\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1$

Khi đó:

$(\frac{a}{b}+1)(\frac{b}{c}+1)(\frac{c}{a}+1)=(1+1)(1+1)(1+1)=8$ 

Ta có đpcm.

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 5 2022 lúc 20:39

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{2a+b}{3a-5b}=\dfrac{2\cdot bk+b}{3\cdot bk-5b}=\dfrac{2k+1}{3k-5}\)

\(\dfrac{2c+d}{3c-5d}=\dfrac{2dk+d}{3dk-5d}=\dfrac{2k+1}{3k-5}\)

Do đó: \(\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\)

Bình luận (1)
TH
21 tháng 5 2022 lúc 21:22

Cách khác:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+b}{2c+d}\\\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a-5b}{3c-5d}\end{matrix}\right.\)

\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{3a-5b}{3c-5d}\Rightarrow\dfrac{2a+b}{3a-5b}=\dfrac{2c+d}{3c-5d}\left(đpcm\right)\)

Bình luận (0)
CP
Xem chi tiết
PB
18 tháng 2 2023 lúc 20:53

Đặt a/b = b/c=k

=> a=bk;b=ck                                                                           (1)

Từ (1) =>  a/a-b= bk/bk-b=bk/b(k-1)=k/k-1                                 (2)

Từ (1) => c/c-d= dk/dk-d=dk/d(k-1) = k/k-1                                    (3)

Từ (2) và (3)=> a/a-b = c/c-d

Cho mình 5 sao nha

 

 

 

 

Bình luận (0)
PN
Xem chi tiết
BH
26 tháng 1 2022 lúc 21:37

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

Bình luận (0)
BH
26 tháng 1 2022 lúc 21:36

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

chỉ cần chứng minh được\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+x}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé.

 

 
Bình luận (0)
BH
26 tháng 1 2022 lúc 21:37

 

 

Bình luận (0)
TH
Xem chi tiết
H24
22 tháng 9 2019 lúc 16:41

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Bình luận (0)
KH
Xem chi tiết
KV
Xem chi tiết
NT
17 tháng 5 2023 lúc 23:09

Mở ảnh

Bình luận (0)
HT
Xem chi tiết