tìm x:
\(2\frac{2}{4}+x=2\frac{1}{2}\)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
Tìm x
1)\(\frac{x^4+x^2+1}{x^2}=\frac{x^2+x+1}{x}\)
2)\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x^2}\right)\)
3)\(\frac{x^4+1}{\left(x+1\right)^4}=\frac{1}{2}\)
1/ <=> x2 - x -(x2 - x)/x3 = 0
<=> (x2 - x)(1 - 1/x3) = 0
Phần còn lại bạn làm tiếp nha điều kiện x#0
Tìm x biết: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)=\(\left(x+4\right)^2\)
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
Tìm x : \(\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}=2-\frac{1}{4-x}\)
Đk:\(x\ne0;1;2;3;4\)
\(pt\Leftrightarrow\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}=2-\frac{1}{4-x}\)
\(\Leftrightarrow\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x}=2-\frac{1}{4-x}\)
\(\Leftrightarrow\frac{1}{x-4}-\frac{1}{x}=2-\frac{1}{4-x}\)\(\Leftrightarrow\frac{4}{x\left(x-4\right)}=\frac{2x-7}{x-4}\)
Dễ thấy \(x\ne4\) nên nhân 2 vế của pt vừa biến đổi với \(x-4\) ta dc:
\(\Leftrightarrow\frac{4}{x}=2x-7\Leftrightarrow x\left(2x-7\right)=4\)
\(\Leftrightarrow2x^2-7x=4\Leftrightarrow2x^2-7x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\)\(\Leftrightarrow x=-\frac{1}{2}\left(x\ne4\right)\)
\(\frac{x^2+x+1}{x+1}+\frac{x^2+2x+2}{x+2}+\frac{x^2+3x+3}{x+3}+\frac{x^2+4x+4}{x+4}=0\)
Tìm x
tìm x
\(x-\frac{3}{4}-x\cdot\frac{2}{3}+x:\frac{1}{2}-x:\frac{2}{5}=\frac{11}{4}\)
\(\frac{x}{5}-\frac{2}{x-1}=\frac{2}{15}\)
\(x-\frac{3}{4}-x.\frac{2}{3}+x:\frac{1}{2}-x:\frac{2}{5}=\frac{11}{4}\)
\(x-x.\frac{2}{3}+x.2-x.\frac{5}{2}=\frac{11}{4}+\frac{3}{4}\)
\(x\left(1-\frac{2}{3}+2-\frac{5}{2}\right)=\frac{7}{2}\)
\(x.\frac{-1}{6}=\frac{7}{2}\)
\(x=\frac{7}{2}:-\frac{1}{6}\)
\(x=-21\)
Vậy \(x=-21\)
Tìm x, biết:
a)\(\frac{2}{9}:x + \frac{5}{6} = 0,5;\)
b)\(\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3};\)
c)\(1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75;\)
d)\(\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\).
a)
\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)
Vậy \(x = \frac{{ - 2}}{3}\).
b)
\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)
Vậy\(x = \frac{1}{12}\).
c)
\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)
Vậy \(x = \frac{7}{3}\).
d)
\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)
Vậy \(x = \frac{{ - 9}}{{10}}\).
CMR: \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
tìm x biết:
\(|x-\frac{1}{3}|=|\left(-3,2\right)+\frac{2}{5}|\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)
\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)
\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)
\(\Rightarrow|x-\frac{1}{3}|=2.8\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)
tính lại kết quả nhé
\(\left|x-\frac{1}{3}\right|=\left|-3.2+\frac{2}{5}\right|=\left|-\frac{14}{5}\right|\)\(=\frac{14}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{14}{5}\\x-\frac{1}{3}=-\frac{14}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{47}{15}\\x=-\frac{37}{15}\end{cases}}\)
Vậy............
b,
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)
\(\Leftrightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1-\frac{x-3}{2009}+1-\frac{x-4}{2008}+1=0\)
\(\Leftrightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}-\frac{x-3-2009}{2009}-\frac{x-4-2008}{2008}=0\)
\(\Leftrightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Leftrightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> x-2012=0
=>x=2012
Vậy ..............
TK MK NHA
*****CHUC BN HOC GIỎI*****
Tìm x : \(\frac{\left(x-3\right)^2}{2}-1\frac{1}{3}\left(x+2\right)^2-\frac{5}{4}\left(x-1\right)\left(x+1\right)=1\frac{1}{2}x\left(x-2\right)-x-4\)
\(\Leftrightarrow\dfrac{1}{2}x^2-3x-\dfrac{9}{2}-\dfrac{4}{3}\left(x^2+4x+4\right)-\dfrac{5}{4}\left(x^2-1\right)=\dfrac{3}{2}x\left(x-2\right)-x-4\)
\(\Leftrightarrow\dfrac{1}{2}x^2-3x-\dfrac{9}{2}-\dfrac{4}{3}x^2-\dfrac{16}{3}x-\dfrac{16}{3}-\dfrac{5}{4}x^2+\dfrac{5}{4}=\dfrac{3}{2}x^2-3x-x-4\)
\(\Leftrightarrow x^2\cdot\dfrac{-25}{12}-\dfrac{25}{3}x-\dfrac{103}{12}-\dfrac{3}{2}x^2+4x+4=0\)
\(\Leftrightarrow\dfrac{-43x^2}{12x}-\dfrac{13x}{3}-\dfrac{55}{12}=0\)
\(\Leftrightarrow43x^2+52x+55=0\)
\(\text{Δ}=52^2-4\cdot43\cdot55=-6756< 0\)
Do đó: Phương trình vô nghiệm