Những câu hỏi liên quan
NN
Xem chi tiết
ZN
6 tháng 3 2023 lúc 16:17

\(A=\left(\dfrac{456}{2}+1\right)+...+\left(\dfrac{2}{456}+1\right)+\left(\dfrac{1}{457}+1\right)+1\)

\(A=458+\dfrac{458}{2}+....+\dfrac{458}{456}+\dfrac{458}{457}-\dfrac{458}{458}\)

\(A=458\left(\dfrac{1}{2}+...+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\right)\)

Ta xét \(\dfrac{1}{2}+....+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\)có :

\(\dfrac{1}{2}=\dfrac{1}{2}\)

\(\dfrac{1}{3}+\dfrac{1}{4}>\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{8}>\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}=\dfrac{1}{2}\)

\(\dfrac{1}{9}+\dfrac{1}{10}+....+\dfrac{1}{16}>\dfrac{1}{16}+....+\dfrac{1}{16}=\dfrac{1}{2}\)

\(\dfrac{1}{17}+\dfrac{1}{18}+....+\dfrac{1}{32}>\dfrac{1}{32}+.....+\dfrac{1}{32}=\dfrac{1}{2}\)

\(\dfrac{1}{33}+\dfrac{1}{34}+....+\dfrac{1}{64}>\dfrac{1}{64}+....+\dfrac{1}{64}=\dfrac{1}{2}\)

\(\dfrac{1}{65}+\dfrac{1}{66}+.....+\dfrac{1}{128}>\dfrac{1}{128}+....+\dfrac{1}{128}=\dfrac{1}{2}\)

\(\dfrac{1}{129}+\dfrac{1}{130}+.....+\dfrac{1}{256}>\dfrac{1}{256}+....+\dfrac{1}{256}=\dfrac{1}{2}\)

\(\dfrac{1}{257}+\dfrac{1}{258}+....+\dfrac{1}{458}>\dfrac{1}{458}+...+\dfrac{1}{458}=\dfrac{1}{2}\)

Vậy ta thấy được rằng

\(\dfrac{1}{2}+...+\dfrac{1}{456}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{202}{458}\)

\(=4+\dfrac{202}{458}=\dfrac{2034}{458}\)

Vậy \(A>458.\dfrac{2034}{458}=2034\)

Hay tức là A > 2016 ( đpcm )

 

 

 

Bình luận (0)
DP
Xem chi tiết
MP
23 tháng 3 2022 lúc 14:36

Ta có:
A = (457/1 + 1) + (456/2 + 1) + ... + (2/456 + 1) + (1/457 + 1) - 457
A = 458 + 458/2 + ... + 458/456 + 458/457 - 457
A = 458 (1 + 1/2 + ...+ 1/456 + 1/457) - 457
Xét 1 + 1/2 + ... + 1/456 + 1/457, ta có
1 = 1
1/2 = 1/2
1/3 + 1/4 > 1/4 + 1/4 = 1/2
1/5 + 1/6 + ... + 1/8 > 1/8 + 1/8 + ... + 1/8 = 1/2
1/9 + 1/10 +...+ 1/16 > 1/16 + 1/16 +...+ 1/16 = 1/2
1/17 + 1/18 + ... + 1/32 > 1/32 + ... + 1/32 = 1/2
1/33+ 1/34 + ... + 1/64 > 1/64 + ...+ 1/64 = 1/2
1/65 + 1/66 + ...+ 1/128 > 1/128 + ... + 1/128 = 1/2
1/129 + 1/130 + ... + 1/256 > 1/256 + ...+ 1/256 = 1/2
1/257 + 1/258 + ... + 1/457 > 1/457 + ... + 1/457 = 201/457 > 0,4
Vậy 1 + 1/2 + ... + 1/456 + 1/457 > 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 0,4 = 5,4
Vậy A > 458*5,4 - 457 = 2016,2
Vậy A > 2016.
 

Bình luận (0)
 Khách vãng lai đã xóa
MP
23 tháng 3 2022 lúc 16:50

Ta có:
A = (456/2 + 1) + ... + (2/456 + 1) + (1/457 + 1) + 1
A = 458 + 458/2 + ... + 458/456 + 458/457 - 458/458
A = 458 (1/2 + ...+ 1/456 + 1/457 + 1/458)
Xét 1/2 + ... + 1/456 + 1/458, ta có
1/2 = 1/2
1/3 + 1/4 > 1/4 + 1/4 = 1/2
1/5 + 1/6 + ... + 1/8 > 1/8 + 1/8 + ... + 1/8 = 1/2
1/9 + 1/10 +...+ 1/16 > 1/16 + 1/16 +...+ 1/16 = 1/2
1/17 + 1/18 + ... + 1/32 > 1/32 + ... + 1/32 = 1/2
1/33+ 1/34 + ... + 1/64 > 1/64 + ...+ 1/64 = 1/2
1/65 + 1/66 + ...+ 1/128 > 1/128 + ... + 1/128 = 1/2
1/129 + 1/130 + ... + 1/256 > 1/256 + ...+ 1/256 = 1/2
1/257 + 1/258 + ... + 1/458 > 1/458 + ... + 1/458 = 202/458
Vậy 1/2 + ... + 1/456 + 1/457 > 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 202/458 = 4 + 202/458 = 2034/458
Vậy A > 458*2034/458 = 2034
Vậy A > 2016. 

Bình luận (0)
 Khách vãng lai đã xóa
ES
Xem chi tiết
LP
19 tháng 8 2023 lúc 17:04

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

Bình luận (0)
NL
Xem chi tiết
NN
9 tháng 11 2017 lúc 19:23

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

Bình luận (0)
LM
Xem chi tiết
SY
6 tháng 1 2015 lúc 16:25

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

Bình luận (0)
N1
10 tháng 7 2015 lúc 22:09

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

Bình luận (0)
NT
24 tháng 1 2016 lúc 15:26

a) a lẻ suy ra a+5 chia hết cho 2

a chẵn suy ra a+8 chia hết cho 2

Bình luận (0)
HE
Xem chi tiết
TD
8 tháng 10 2018 lúc 13:59

Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
LV
Xem chi tiết
LL
15 tháng 10 2015 lúc 22:03

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a

Bình luận (0)
NH
Xem chi tiết
NY
Xem chi tiết
NT
21 tháng 10 2022 lúc 15:32

Bài 3: 

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: =>-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

Bình luận (0)
TP
Xem chi tiết