Bài 10:Tính
g,A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+....+\(\dfrac{1}{49.50}\)
Bài 2: Tìm \(x\) biết:
\(x\)\(\times\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)=1\)
\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)
Bài 2: Tìm \(x\) biết:
\(x\)\(\times\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)=1\)
\(x.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\dfrac{49}{50}=1\\ \Rightarrow x=1:\dfrac{49}{50}\\ \Rightarrow x=\dfrac{50}{49}\)
3. tính:
A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
A = 1/1.2 +1/2.3 +1/3.4 +...+1/49.50
A = 1 +1/2 -1/2+1/3-1/3+1/4-...-1/49 +1/50
A = 1 - 1/50
A=49/50
tìm số A
A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{49.50}\)
bạn hãy làm chi tiết
`A=1/(1.2)+1/(2.3)+1/(3.4)+....+1/(49.50)`
`=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50`
`=1-1/50=49/50`
Giải:
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
+A = \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{49.50}\)
A = 1 - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\)
A = 1 - \(\dfrac{1}{50}\)
A = \(\dfrac{50}{50}\) - \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\)
Tính :
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}.\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{49}-\dfrac{1}{50}.\)
\(=\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+.....+\left(-\dfrac{1}{49}+\dfrac{1}{49}\right)+\left(1-\dfrac{1}{50}\right).\)\(=0+0+0+.....+0+\left(1-\dfrac{1}{50}\right).\)
\(=1-\dfrac{1}{50}.\)
=\(\dfrac{49}{50}.\)
CHÚC BN HỌC TỐT!!! :) :) :)
Đừng quên bình luận nếu bài tớ sai nhé!!!
So sánh A = \(\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+...+\dfrac{1}{49.50^2}\)với \(\dfrac{1}{2}\)
Ta có A = 1 / 2 . ( 1 - 1 / 2 + 1 / 2 - 1/ 3 + ............+ 1 / 49 - 1 / 50 )
= 1/ 2 . 1 + ( -1/2 + 1/2 ) + ...........+ ( - 1/49 + 1/49 ) -1/50
=1/2 + 0 + 0 + .................+ 0 - 1/50
= 1/2 - 1/50
=12/25
Vậy A = 12/25
Ta có 12/25 < 1/2
vậy 25/12 < 1/2
Tính tổng A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{49.50}\)
Ta có:
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}\)
\(\Rightarrow A=\dfrac{49}{50}\)
Vậy \(A=\dfrac{49}{50}.\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}=\dfrac{49}{50}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
A=\(\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+\dfrac{1}{3.4^2}+...+\dfrac{1}{49.50^2}\)
B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
CM A<B
Lời giải:
Ta có:
\(\frac{1}{1.2^2}=\frac{1}{2^2}\)
\(2.3^2>3^2\Rightarrow \frac{1}{2.3^2}< \frac{1}{3^2}\)
\(3.4^2> 4^2\Rightarrow \frac{1}{3.4^2}< \frac{1}{4^2}\)
...........
\(49.50^2> 50^2\Rightarrow \frac{1}{49.50^2}< \frac{1}{50^2}\)
Cộng theo từng vế các BĐT:
\(\Rightarrow \frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+....+\frac{1}{49.50^2}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)
\(\Leftrightarrow A< B\)
Vậy ta có đpcm.
cho A=\(\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+...+\dfrac{1}{49.50^2}\)và B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\),Chứng minh A<\(\dfrac{1}{2}\)<B