Tính:
a) \(10^{10}.\left(-10\right)^4;\)
b) \(\left(-2\right).\left(-2\right).\left(-2\right).\left(-2\right)\left(-2\right)+2^5;\)
c) \(\left(-3\right).\left(-3\right).\left(-3\right).\left(-3\right)-3^4.\)
Tính:
a) \(\dfrac{5^4.20^4}{25^3.4^5}\)
b) \(\left(\dfrac{-10}{3}\right)^5\) .\(\left(\dfrac{-6}{5}\right)^4\)
a) `(5^4 . 20^4)/(25^3 .4^5)`
`=(5^4 . (5.4)^4)/((5^2)^3 .4^5)`
`= (5^4 . 5^4 . 4^4)/(5^6 . 4^5)`
`= (5^2)/4=25/4`
b) `(-10/3)^5 . (-6/5)^4`
`=-10/3 . [(-10/3) . (-6/5)]^4`
`= -10/3 . [ (-5.2 . (-2).3)/(3.5)]^4`
`=-10/3 . 4^4`
`=-2560/3`
A) \(=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
B)=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{-10}{3}\right)^4.\left(\dfrac{-6}{5}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{-10}{3}.\dfrac{-6}{5}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{60}{15}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).4^4\)
=\(\left(\dfrac{-10}{3}\right).256\)
=\(\dfrac{-2650}{3}\)
a) \(\dfrac{5^4.20^4}{25^3.4^5}=\dfrac{5^4.4^4.5^4}{5^6.4^5}=\dfrac{5^2}{4}=\dfrac{25}{4}\)
b) \(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4=\left(\dfrac{-10}{3}\right)^4.\left(\dfrac{-10}{3}\right).\left(\dfrac{-6}{5}\right)^4=\left(\dfrac{-10}{3}.\dfrac{-6}{5}\right)^4.\left(\dfrac{-10}{3}\right)=\left(4\right)^4.\left(\dfrac{-10}{3}\right)=256.\left(\dfrac{-10}{3}\right)=\dfrac{-2560}{3}\)
Bỏ dấu ngoặc rồi tính:
a) \(\left( {4 + 32 + 6} \right) + \left( {10 - 36 - 6} \right)\)
b) \(\left( {77 + 22 - 65} \right) - \left( {67 + 12 - 75} \right)\)
c) \( - \left( { - 21 + 43 + 7} \right) - \left( {11 - 53 - 17} \right)\)
a)
Cách 1.
\(\begin{array}{l}\left( {4 + 32 + 6} \right) + \left( {10 - 36 - 6} \right)\\ = 4 + 32 + 6 + 10 - 36 - 6\\ = 52 + \left( { - 36} \right) + \left( { - 6} \right)\\ = 52 + \left( { - 42} \right) = 52 - 42 = 10\end{array}\)
Cách 2.
\(\begin{array}{l}\left( {4 + 32 + 6} \right) + \left( {10 - 36 - 6} \right)\\ = 4 + 32 + 6 + 10 - 36 - 6\\ = 36 + 6 + 10 + \left( { - 36} \right) + \left( { - 6} \right)\\ = 36 + \left( { - 36} \right) + 6 + \left( { - 6} \right) + 10\\ = 0 + 0 + 10 = 10\end{array}\)
b) \(\left( {77 + 22 - 65} \right) - \left( {67 + 12 - 75} \right)\)
\(\begin{array}{l} = 77 + 22 - 65 - 67 - 12 + 75\\ = 77 - 67 + 22 - 12 + 75 - 65\\ = 10 + 10 + 10 = 30\end{array}\)
c) \( - \left( { - 21 + 43 + 7} \right) - \left( {11 - 53 - 17} \right)\)
\(\begin{array}{l} = 21 - 43 - 7 - 11 + 53 + 17\\ = 21 - 11 + 53 - 43 + 17 - 7\\ = 10 + 10 + 10 = 30\end{array}\)
Tính:
a) \(\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\)
b) \(\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\)
c) \(\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\)
d)\(\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\)
a)
\(\begin{array}{l}\left( {\frac{3}{4}:1\frac{1}{2}} \right) - \left( {\frac{5}{6}:\frac{1}{3}} \right)\\ = \left( {\frac{3}{4}:\frac{3}{2}} \right) - \left( {\frac{5}{6}.3} \right)\\ = \left( {\frac{3}{4}.\frac{2}{3}} \right) - \frac{5}{2}\\ = \frac{1}{2} - \frac{5}{2}\\ = \frac{-4}{2}\\= - 2.\end{array}\)
b)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{5}} \right):\frac{1}{{10}}} \right] - \frac{5}{7}.\left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{5}} \right).10 - \frac{5}{7}.\left( {\frac{{10}}{{15}} - \frac{3}{{15}}} \right)\\ = - 2 - \frac{5}{7}.\frac{7}{{15}}\\ = - 2 - \frac{1}{3}\\ = \frac{{ - 6}}{3} - \frac{1}{3}\\ = \frac{{ - 7}}{3}\end{array}\)
c)
\(\begin{array}{l}\left( { - 0,4} \right) + 2\frac{2}{5}.{\left[ {\left( {\frac{{ - 2}}{3}} \right) + \frac{1}{2}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left[ {\left( {\frac{{ - 4}}{6}} \right) + \frac{3}{6}} \right]^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.{\left( {\frac{{ - 1}}{6}} \right)^2}\\ = \left( { - \frac{2}{5}} \right) + \frac{{12}}{5}.\frac{1}{{36}}\\ = \left( { - \frac{2}{5}} \right) + \frac{1}{{15}}\\ = \left( { - \frac{6}{{15}}} \right) + \frac{1}{{15}}\\ = \frac{{ - 5}}{{15}}\\ = \frac{{ - 1}}{3}\end{array}\)
d)
\(\begin{array}{l}\left\{ {\left[ {{{\left( {\frac{1}{{25}} - 0,6} \right)}^2}:\frac{{49}}{{125}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 1}}{3}} \right) + \frac{1}{2}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{1}{{25}} - \frac{3}{5}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \left[ {\left( {\frac{{ - 2}}{6}} \right) + \frac{3}{6}} \right]\\ = \left\{ {\left[ {{{\left( {\frac{{ 1}}{{25}}-\frac{15}{25}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\left[ {{{\left( {\frac{{ - 14}}{{25}}} \right)}^2}.\frac{{125}}{{49}}} \right].\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left\{ {\frac{{196}}{{{{25}^2}}}.\frac{{25.5}}{{49}}.\frac{5}{6}} \right\} - \frac{1}{6}\\ = \left( {\frac{{4.49.25.5.5}}{{{{25}^2}.49.6}}} \right) - \frac{1}{6}\\ = \frac{4}{6} - \frac{1}{6}\\ = \frac{3}{6}\\ = \frac{1}{2}\end{array}\)
Tính:
A=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
B=\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
C=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D=\(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)(2 cách)
F=\(\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{3-2\sqrt{2}}}-\dfrac{\sqrt{17}+12\sqrt{2}}{\sqrt{3+2\sqrt{2}}}\)
\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)
\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)
\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)
\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)
\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)
\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)
\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)
----------------------------
\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)
\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)
\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)
\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
Cách 1:
\(E=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)
\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
Cách 2:
\(E^2=(4+\sqrt{15})^2(\sqrt{10}-\sqrt{6})^2(4-\sqrt{15})=(4+\sqrt{15})(4-\sqrt{15})(4+\sqrt{15}).(16-4\sqrt{15})\)
\(=(16-15)(4+\sqrt{15})(4-\sqrt{15}).4=(16-15)(16-15).4=4\)
Vì $E>0$ nên $E=2$
Tính:a)\(\left(\frac{1}{9}-1\right).\left(\frac{1}{10}-1\right)...\left(\frac{1}{2004}-1\right).\left(\frac{1}{2005}-1\right)\)
b)\(81^{10}-27^{13}-9^{21}⋮225\)
a,\(\left(\frac{1}{9}-1\right).\left(\frac{1}{10}-1\right)...\left(\frac{1}{2004}-1\right).\left(\frac{1}{2005}-1\right)\)
\(=\frac{-8}{9}.\frac{-9}{10}...\frac{-2003}{2004}.\frac{-2004}{2005}\)
\(=\frac{\left(-8\right).\left(-9\right)...\left(-2003\right).\left(-2004\right)}{9.10...2004.2005}\)
\(=\frac{-\left(8.9...2003.2004\right)}{9.10...2004.2005}\)
\(=\frac{-8}{2005}\)
b,Ta có: \(81^{10}-27^{13}-9^{21}\)
\(=\left(3^4\right)^{10}-\left(3^3\right)^{13}-\left(3^2\right)^{21}\)
\(=3^{40}-3^{39}-3^{42}\)
\(=3^{39}.3-3^{39}-3^{39}.3^3\)
\(=3^{39}.\left(3-1-3^3\right)\)
\(=3^2.3^{37}.\left(-25\right)\)
\(=3^{37}.\left(-225\right)⋮225\)
Vậy \(81^{10}-27^{13}-9^{21}⋮225\)
Thực hiện các phép tính:
a,\(\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\)
b, \(10\dfrac{1}{5}-5\dfrac{1}{2}.\dfrac{60}{11}+3:15\%\)
c. \(4\dfrac{3}{4}+\left(-0,37\right)+\dfrac{1}{8}+\left(-1,8\right)+\left(-2,5\right)+3\dfrac{1}{12}\)
a, = (58/9 + 7/11) - (40/9 - 26/11)
= 701/99 - 206/99
= 5
b, = 51/5 - 11/2 . 60/11 + 3 : 3/20
= 51/5 - 30 + 20
= -99/5 + 20
= 1/5
c, = 19/4 + (-0,37) + 1/8 + (-1,8) + (-2,5) + 37/12
= 219/50 + -67/40 + 7/12
= 1973/600
Tính:
a) \(\dfrac{2}{3}\times\dfrac{5}{8}+\dfrac{7}{4}\) b) \(\dfrac{8}{5}:\left(\dfrac{4}{3}-\dfrac{5}{6}\right)\) c) \(\dfrac{3}{4}\times\dfrac{1}{5}-\dfrac{1}{10}\)
a) $\frac{3}{2} \times \frac{5}{8} + \frac{7}{4} = \frac{{15}}{{16}} + \frac{7}{4} = \frac{{15}}{{16}} + \frac{{28}}{{16}} = \frac{{43}}{{16}}$
b) $\frac{8}{5}:\left( {\frac{4}{3} - \frac{5}{6}} \right) = \frac{8}{5}:\left( {\frac{8}{6} - \frac{5}{6}} \right) = \frac{8}{5}:\frac{1}{2} = \frac{8}{5} \times 2 = \frac{{16}}{5}$
c) $\frac{3}{4} \times \frac{1}{5} - \frac{1}{{10}} = \frac{3}{{20}} - \frac{1}{{10}} = \frac{3}{{20}} - \frac{2}{{20}} = \frac{1}{{20}}$
Tính:
a)\(\frac{{ - 1}}{6} + 0,75\);
b)\(3\frac{1}{{10}} - \frac{3}{8}\);
c)\(0,1 + \frac{{ - 9}}{{17}} - \left( { - 0,9} \right)\).
a)\(\frac{{ - 1}}{6} + 0,75 = \frac{{ - 1}}{6} + \frac{3}{4} = \frac{{ - 2}}{{12}} + \frac{9}{{12}} = \frac{7}{{12}}\);
b)\(3\frac{1}{{10}} - \frac{3}{8} = \frac{{31}}{{10}} - \frac{3}{8} = \frac{{124}}{{40}} - \frac{{15}}{{40}} = \frac{{109}}{{40}}\);
c)
\(\begin{array}{l}0,1 + \frac{{ - 9}}{{17}} - \left( { - 0,9} \right) = \frac{1}{{10}} + \frac{{ - 9}}{{17}} + \frac{9}{{10}}\\ = (\frac{1}{{10}} + \frac{9}{{10}}) + \frac{{ - 9}}{{17}} = 1 + \frac{{ - 9}}{{17}} =\frac{{ 17}}{{17}}+\frac{{ - 9}}{{17}}= \frac{8}{{17}}\end{array}\)
Tính:
a) \(\dfrac{-1}{2}+\dfrac{5}{6}+\dfrac{1}{3}\);
b) \(\dfrac{-3}{8}+\dfrac{7}{4}-\dfrac{1}{12}\);
c) \(\dfrac{3}{5}:\left(\dfrac{1}{4}\cdot\dfrac{7}{5}\right)\);
d) \(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}\).
a: \(\dfrac{-1}{2}+\dfrac{5}{6}+\dfrac{1}{3}\)
\(=\dfrac{-3}{6}+\dfrac{5}{6}+\dfrac{2}{6}\)
\(=\dfrac{4}{6}=\dfrac{2}{3}\)
b: \(\dfrac{-3}{8}+\dfrac{7}{4}-\dfrac{1}{12}\)
\(=\dfrac{-9}{24}+\dfrac{42}{24}-\dfrac{2}{24}\)
\(=\dfrac{31}{24}\)
c: \(\dfrac{3}{5}:\left(\dfrac{1}{4}\cdot\dfrac{7}{5}\right)=\dfrac{3}{4}:\dfrac{7}{20}=\dfrac{3}{4}\cdot\dfrac{20}{7}=\dfrac{15}{7}\)
d: \(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}\)
\(=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}=\dfrac{7}{8}\)
Tính:
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}\)
b) \(\dfrac{4}{3}\) + 5 x \(\dfrac{5}{8}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)x\dfrac{25}{29}\)
d) \(\dfrac{1}{4}x\dfrac{5}{12}+\dfrac{5}{12}x\dfrac{4}{5}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{11}{10}+\dfrac{3}{5}\times\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+5\times\dfrac{5}{8}=\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\left(\dfrac{2}{5}+\dfrac{3}{7}\right)\times\dfrac{25}{29}=\left(\dfrac{14}{35}+\dfrac{15}{35}\right)\times\dfrac{25}{39}=\dfrac{29}{35}\times\dfrac{25}{39}=\dfrac{145}{274}\)
d) \(\dfrac{1}{4}\times\dfrac{5}{12}+\dfrac{5}{12}\times\dfrac{4}{5}=\dfrac{5}{12}\times\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}\times\dfrac{21}{20}=\dfrac{105}{240}=\dfrac{7}{16}\)
a) \(\dfrac{11}{10}+\dfrac{3}{5}x\dfrac{3}{2}=\dfrac{11}{10}+\dfrac{9}{10}=\dfrac{20}{10}=2\)
b) \(\dfrac{4}{3}+\dfrac{25}{8}=\dfrac{32}{24}+\dfrac{75}{24}=\dfrac{107}{24}\)
c) \(\dfrac{29}{35}x\dfrac{25}{29}=\dfrac{5}{7}\)
\(=\dfrac{5}{12}x\left(\dfrac{1}{4}+\dfrac{4}{5}\right)=\dfrac{5}{12}x\dfrac{21}{20}=\dfrac{7}{16}\)