3.7*3.8+8.3*3.7-0.4*3.7*5
3.7*3.8+8.3*3.7-0.4*3.7*5
=3,7*(3,8+8,3-0,4*5) = 3,7*10,1=37,37
Tính bằng cách thuận tiện nhất :
a / 2 x 4 x 8 x 0.5 x 0.125 x 0.25 x ( 0.4321 + 0.5679 )
b /3.7 x 3.8 + 8.3 x 3.7 - 0.4 x 3.7 x 5
a, 2 x 4 x 8 x 0,5 x 0,125 x 0,25 x ( 0,4321 + 0,5679 )
= ( 2 x 0,5 ) x ( 4 x 0,25 ) x ( 0,125 x 8 ) x ( 0,4321 + 0,5679 )
= 1 x 1 x 1 x ( 0,4321 + 0,5679 )
= 1 x ( 0,4321 + 0,5679 )
= 1 x 1 = 1
b, 3,7 x 3,8 + 8,3 x 3,7 - 0,4 x 3,7 x 5
= 3,7 x ( 3,8 + 8,3 ) - ( 0,4 x 5 ) x 3,7
= 3,7 x 12,1 - 2 x 3,7
= 3,7 x ( 12,1 - 2 )
= 3,7 x 10,1 = 37,37
Tính : a, 3.7*3.8+8.3+3.7-0.4*3.7*5.
B, 2.5*9.5*4+19.5*10
2
6
6
2
6
2
222222222222222222222222222222
333333333333333333333333333333
p
tính tổng sau bằng cách hợp lý:
10.9-10.4+10.3-9.8+9.7-9.2+9.1-...-3.8+3.7-3.2
\(\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^6+3.7^{15}}\)
Ta có :
\(\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^6+3.7^{15}}\)
\(=\dfrac{5.7^6\left(3.7^9-19.7^8\right)}{7^6\left(1+3.7^9\right)}\)
\(=\dfrac{5.7^8\left(3.7-19\right)}{1+3.7^9}\)
\(=\dfrac{5.7^8.2}{1+3.7^9}\)
\(=\dfrac{10.7^8}{1+3.7^8.7}\)
\(=\dfrac{10.7^8}{1+7^8.21}\)
Tính : \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
\(\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\frac{5.2.7^{14}}{10.7^{15}}=\frac{1}{7}\)
\(P=\dfrac{2.5^{22}-9.5^{20}}{25^{10}}:\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
Đặt P= \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\) : \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
Có : \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\)
= \(\dfrac{\left(2.5-9\right).5^{21}}{\left(5^2\right)^{10}}\)= \(\dfrac{\left(10-9\right).5^{21}}{5^{20}}\)=\(\dfrac{5^{21}}{5^{20}}\)= 5 (1)
Có: \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
= \(\dfrac{5.\left[7^{14}.\left(3.7-19\right)\right]}{\left[7^{15}.\left(3+7\right)\right]}\)=\(\dfrac{5.7^{14}.2}{7^{15}.10}\)=\(\dfrac{10.7^{14}}{7^{15}.10}\)=\(\dfrac{1}{7}\) (2)
Từ (1) và (2) suy ra:
A= 5:\(\dfrac{1}{7}\)=5.7=35
Vậy A=35 hay \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\):\(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)= 35
\(P=\dfrac{2.5^{22}-9.5^{20}}{25^{10}}:\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
\(=\dfrac{5^{20}\left(2.5^2-9\right)}{5^{20}}:\dfrac{5.7^{14}\left(3.7-19\right)}{7^{15}\left(7+3\right)}\)
\(=\left(2.5^2-9\right):\dfrac{5\left(3.7-19\right)}{7.10}\)
\(=\dfrac{7.10\left(2.5^2-9\right)}{5\left(3.7-19\right)}\)
\(=\dfrac{7.2\left(2.5^2-9\right)}{3.7-19}\)
\(=\dfrac{14.41}{21-19}\)
\(=\dfrac{14}{2}\cdot41=7.41=287\)
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}+\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
Tính tổng A= 5/3.7 + 5/7.11 + 5/11.15+...+5/2019.2023
Các bạn cho mình hỏi mình viết thành 5/4 x (4/3.7 + 4/7.11 + 4/11.15+...+ 4/2019.2023 ) được ko ạ?
Viết vậy đúng đó em
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . [4/(3.7) + 4/(7.11) + 4/(11.15) + ... + 4/(2019.2023)]
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069