Cho x+y+z =0 và xy+yz + zx =0
Chứng minh x=y=z
cho x,y,z>0
chứng minh rằng
\(\sqrt{x^2+xy+2y^2}+\sqrt{y^2+yz+2z^2}+\sqrt{z^2+zx+2x^2}\ge2\left(x+y+z\right)\)
Bài này hôm trước hình như bạn mới hỏi xong, vậy làm chi tiết cho đỡ băn khoăn:
Với các số dương a;b;c;x;y;z bất kì, ta chứng minh BĐT sau:
\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, BĐT tương đương:
\(a^2+b^2+x^2+y^2+2\sqrt{a^2b^2+x^2y^2+x^2b^2+a^2y^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)
\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)
\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Từ đó suy ra:
\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)
Áp dụng cho bài toán:
\(VT=\sqrt{\left(x+\dfrac{y}{2}\right)^2+\left(\dfrac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\dfrac{z}{2}\right)^2+\left(\dfrac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\dfrac{x}{2}\right)^2+\left(\dfrac{\sqrt{3}x}{2}\right)^2}\)
\(VT\ge\sqrt{\left(x+\dfrac{y}{2}+y+\dfrac{z}{2}+z+\dfrac{x}{2}\right)^2+\left(\dfrac{\sqrt{3}y}{2}+\dfrac{\sqrt{3}z}{2}+\dfrac{\sqrt{3}x}{2}\right)^2}=2\left(x+y+z\right)\) (đpcm)
cho x,y,z>0
chứng minh rằng
\(\sqrt{x^2+xy+2y^2}+\sqrt{y^2+yz+2z^2}+\sqrt{z^2+zx+2x^2}\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\sqrt{4x^2+4xy+8y^2}+\sqrt{4y^2+4yz+8z^2}+\sqrt{4z^2+4zx+8x^2}\ge4\left(x+y+z\right)\)
Ta có:
\(VT=\sqrt{\left(2x+y\right)^2+\left(\sqrt{7}y\right)^2}+\sqrt{\left(2y+z\right)^2+\left(\sqrt{7}z\right)^2}+\sqrt{\left(2z+x\right)^2+\left(\sqrt{7}x\right)^2}\)
\(VT\ge\sqrt{\left(2x+y+2y+z+2z+x\right)^2+\left(\sqrt{7}x+\sqrt{7}y+\sqrt{7}z\right)^2}\)
\(VT\ge\sqrt{16\left(x+y+z\right)^2}=4\left(x+y+z\right)\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\)
cho x,y,z>0 và x+y+z=1 chứng minh\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}\sqrt{yz}+\sqrt{zx}\)
cho x+y++z=0 và xy+yz+zx=,chứng minh x=y=z
ta có:
(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
<=>(x+y+z)2=x2+y2+z2+2.(xy+xz+yz)
thay x+y+z=0 và xy+xz+yz=0 ta được:
02=x2+y2+z2=2.0
<=>x2+y2+z2=0
mà x2;y2;z2\(\ge\)0 nên
=>x=y=z=0 thì x2+y2+z2=0
vậy với x+y++z=0 và xy+yz+zx=0 thì x=y=z
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
Cho \(x+y+z=xyz\) và \(xy+yz+zx\ne-3\)
Chứng minh: \(\dfrac{x.\left(y^2+z^2\right)+y.\left(z^2+x^2\right)+z.\left(x^2+y^2\right)}{xy+yz+zx-3}=xyz\)
Cho x, y, z > 0 thỏa mãn xyz = 1. Chứng minh :
\(\frac{xy}{x^5+xy+y^5}+\frac{yz}{y^5+yz+z^5}+\frac{zx}{z^5+zx+x^5}\le1\)
ủa đây là toám lớp 1 hả anh
cauchy phần mẫu @@
Forever_Alone tên là Anh nhưng ko bt họ
cho x, y, z >0. chứng minh rằng (y+z)√yz/x + (z+x)√zx/y + (x+y)√xy/z >=2(x+y+z)
Áp dụng BĐT AM-GM ta có:
\(\frac{\left(y+z\right)\sqrt{yz}}{x}\ge\frac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\frac{2\sqrt{\left(yz\right)^2}}{x}=\frac{2yz}{x}\)
Tương tự cho 2 BĐT còn lại ta cũng có
\(\frac{\left(x+y\right)\sqrt{xy}}{z}\ge\frac{2xy}{z};\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xz}{y}\)
\(\Leftrightarrow\frac{\left(y+z\right)\sqrt{yz}}{x}+\frac{\left(x+y\right)\sqrt{xy}}{z}+\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\)
Cần chứng minh \(\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)
Áp dụng BĐT AM-GM:
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2\sqrt{y^2}=2y\)
Tương tự rồi cộng theo vế ta có ĐPCM
Khi \(x=y=z\)
chứng minh: xy/z+yz/x+zx/y>=x+y+z với`x,y,z>0