Những câu hỏi liên quan
HH
Xem chi tiết
TH
20 tháng 8 2016 lúc 16:34

60 = 3.4.5 
Ta cần c/m xyz chia hết cho 3; 4 và 5. 
Xét x² + y² = z² 

* Giả sử cả x; y và z đều không chia hết cho 3. 
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1. 
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 ) 
Vô lí vì z² ≡ 1 ( mod 3 ) 
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠) 

* Giả sử cả x; y và z không chia hết cho 4. 
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3. 
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1. 
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại } 
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4 
*TH 3 : Có 1 số chẵn và 2 số lẻ. 
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )} 
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau : 

........z...............x...........z-... 
....4m+1.......4n+1.........4(m-n)....... 
....4m+3.......4n+1.......4(m-n)+2....... 
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn. 

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣) 

* Giả sử cả x; y và z không chia hết cho 5. 
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1. 
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại } 
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại } 
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại } 

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦) 
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

Bình luận (0)
KK
Xem chi tiết
YA
16 tháng 10 2016 lúc 15:28

60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²

* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)

* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :

........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)

* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

Bình luận (0)
HH
Xem chi tiết
AM
20 tháng 8 2016 lúc 16:09

60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²

* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)

* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :

........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)

* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

Bình luận (0)
H24
20 tháng 8 2016 lúc 21:45

kho that

Bình luận (0)
US
21 tháng 8 2016 lúc 9:02

ai choi bangbang cua tao

Bình luận (0)
E2
Xem chi tiết
DS
Xem chi tiết
NT
13 tháng 2 2022 lúc 13:53

a: Giả sử như x,y không chia hết cho 3 thì x2,y2 chia 3 dư 1

\(\Leftrightarrow x^2+y^2=z^2\) chia 3 dư 2(vô lý vì z2 là số chính phương)

\(\Leftrightarrow xy⋮3\)(1)

Giả sử như x,y không chia hết cho 4 thì x2,y2 chia 4 dư 1

\(\Leftrightarrow x^2+y^2=z^2\) chia 4 dư 2(vô lý vì z2 là số chính phương)

\(\Leftrightarrow xy⋮4\)(2)

Từ (1) và (2) suy ra \(xy⋮12\)

b:Tham khảo:

60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²

* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)

* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :

........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)

* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

Bình luận (0)
DS
Xem chi tiết
NT
13 tháng 2 2022 lúc 14:06

 

a: Giả sử như x,y không chia hết cho 3 thì x2,y2 chia 3 dư 1

\(\Leftrightarrow x^2+y^2=z^2\) chia 3 dư 2(vô lý vì z2 là số chính phương)

\(\Leftrightarrow xy⋮3\)(1)

Giả sử như x,y không chia hết cho 4 thì x2,y2 chia 4 dư 1

\(\Leftrightarrow x^2+y^2=z^2\) chia 4 dư 2(vô lý vì z2 là số chính phương)

\(\Leftrightarrow xy⋮4\)(2)

Từ (1) và (2) suy ra \(xy⋮12\)

b:Tham khảo:

60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²

* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)

* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :

........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.

Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)

* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

Bình luận (0)
TD
Xem chi tiết
DH
3 tháng 3 2022 lúc 9:58

\(x^2+y^2=z^2\)

Công thức tổng quát có dạng: 

\(x=k\left(m^2-n^2\right),y=k2mn,z=k\left(m^2+n^2\right)\)(\(m,n\inℤ\))

\(xyz=k^32mn\left(m^4-n^4\right)\)

- Chứng minh \(xyz\)chia hết cho \(3\):

Nếu \(m,n\)có ít nhất một số chia hết cho \(3\)suy ra \(xyz\)chia hết cho \(3\).

Nếu \(m,n\)đều không chia hết cho \(3\)suy ra \(m^4,n^4\)đều chia cho \(3\)dư \(1\)

suy ra \(m^4-n^4\)chia hết cho \(3\).

Suy ra \(xyz\)chia hết cho \(3\).

- Chứng minh \(xyz\)chia hết cho \(4\)

Nếu \(m,n\)có ít nhất một số chẵn suy ra \(2mn\)chia hết cho \(4\)

suy ra \(xyz\)chia hết cho \(4\).

Nếu \(m,n\)đều lẻ thì \(m^4,n^4\)đều lẻ nên \(m^4-n^4\)chẵn. 

Suy ra \(xyz\)chia hết cho \(4\).

- Chứng minh \(xyz\)chia hết cho \(5\)

Nếu \(m,n\)có ít nhất một số chia hết cho \(5\)suy ra \(xyz\)chia hết cho \(5\).

Nếu \(m,n\)đều không chia hết cho \(5\)suy ra \(m^4,n^4\)đều chia cho \(5\)dư \(1\)

suy ra \(m^4-n^4\)chia hết cho \(5\).

Suy ra \(xyz\)chia hết cho \(5\).

Vậy \(xyz\)chia hết cho cả \(3,4,5\)mà \(3,4,5\)đôi một nguyên tố cùng nhau suy ra \(xyz\)chia hết cho \(3.4.5=60\).

Ta có đpcm. 

Suy ra \(xyz\)chia hết cho \(3\).

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
NA
Xem chi tiết
AH
30 tháng 7 2017 lúc 0:24

Lời giải:

Biến đổi:

\(P=(x+y)(y+z)(x+z)+xyz=xy(x+y)+yz(y+z)+xz(z+x)+3xyz\)

\(\Leftrightarrow P=(x+y+z)(xy+yz+xz)\)

Với \(x+y+z\vdots 6\Rightarrow P\vdots 6(1)\)

Giả sử \(x,y,z\) đều là các số nguyên lẻ, khi đó \(x+y+z\) lẻ thì không thể chia hết cho $6$ (vô lý)

Do đó , phải tồn tại ít nhất một trong ba số \(x,y,z\) là số chẵn

\(\Rightarrow 3xyz\vdots 6(2)\)

Từ \((1),(2)\Rightarrow Q=P-3xyz\vdots 6\)

Ta có đpcm

Bình luận (0)