Những câu hỏi liên quan
PH
Xem chi tiết
BT
Xem chi tiết
NT
19 tháng 8 2021 lúc 21:03

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{9}{49}\)

\(\Leftrightarrow BH=\dfrac{9}{49}CH\)

Ta có: \(BH\cdot CH=AH^2\)

\(\Leftrightarrow CH^2\cdot\dfrac{9}{49}=42^2=1764\)

\(\Leftrightarrow CH^2=9604\)

\(\Leftrightarrow CH=98\left(cm\right)\)

\(\Leftrightarrow BH=18\left(cm\right)\)

Bình luận (0)
NA
Xem chi tiết
NN
Xem chi tiết
NT
26 tháng 7 2021 lúc 20:53

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

nên \(AB=\dfrac{3}{7}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{7}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{42^2}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{49}AC^2}+\dfrac{\dfrac{9}{49}}{\dfrac{9}{49}AC^2}=\dfrac{1}{1764}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}=2088\)

\(\Leftrightarrow AC^2=11368\)

\(\Leftrightarrow AC=14\sqrt{58}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{7}\cdot14\sqrt{58}=6\sqrt{58}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2=13456\)

hay BC=116(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(6\sqrt{58}\right)^2}{116}=18\left(cm\right)\\CH=\dfrac{AC^2}{CH}=\dfrac{\left(14\sqrt{58}\right)^2}{116}=98\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
DN
Xem chi tiết
NT
15 tháng 7 2021 lúc 13:21

undefined

Bình luận (0)
NT
15 tháng 7 2021 lúc 14:05

Ta có: AB:AC=3:4

nên \(AB=\dfrac{3}{4}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{4}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}=\dfrac{1}{36}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{\dfrac{9}{16}}{\dfrac{9}{16}AC^2}=\dfrac{1}{36}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=36\cdot\dfrac{25}{16}=\dfrac{225}{4}\)

\(\Leftrightarrow AC^2=100\)

hay AC=10(cm)

Ta có: \(AB=\dfrac{3}{4}AC\)

nên \(AB=\dfrac{3}{4}\cdot10=7.5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=7.5^2-6^2=4.5^2\)

hay BH=4,5(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=10^2-6^2=64\)

hay HC=8(cm)

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
4 tháng 6 2018 lúc 16:14

Ta có: A B A C = 3 7 ⇒ A B = 3 7 A C

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

1 A H 2 = 1 A B 2 + 1 A C 2 ⇔ 1 42 2 = 49 9 A C 2 + 1 A C 2 ⇔ 1 42 2 = 58 9 A C 2 ⇔ A C 2 = 11369

 AC =  14 58 (cm)  AB = 3 7 . 14 58 = 6 58 (cm)

Áp dụng định lý Pytago cho ABH vuông tại A có: A B 2 + A C 2 = B C 2

⇔ B C 2 = 6 58 2 + 14 58 2 ⇔ B C 2 = 13456 ⇒ B C = 116 c m

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

Đáp án cần chọn là: A

Bình luận (0)
IC
Xem chi tiết
HT
Xem chi tiết
H24
26 tháng 7 2020 lúc 11:55

A B C H

Xét tam giác vuông AHB và CHA có :

      góc AHB = góc CHA = 90độ 

      góc ABH = góc CAH ( cùng phụ với góc C )

Vậy tam giác AHB đồng dạng tam giác CHA ( g.g )

Suy ra : \(\frac{AH}{HC}=\frac{AB}{CA}\)    ( 1 )

Theo đề bài \(\frac{AB}{AC}=\frac{3}{4}\) và AH = 12cm  ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{12}{HC}=\frac{3}{4}\Rightarrow HC=\frac{12.4}{3}=16\) ( cm )

Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :

\(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{12^2}{16}=9\) ( cm )

Vậy BH = 9cm , HC = 16cm

Học tốt

Bình luận (0)
 Khách vãng lai đã xóa