rut gon
5/2 can 7
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
rut gon bien thuc ( can 5 - can 7 ) ^2
\(\left(\sqrt{5}-\sqrt{7}\right)^2\)=\(\sqrt{5^2}-\sqrt{7^2}\)=\(5-7=-2\)
rut gon bieu thuc -3/5<x<1/7
B=|-x+1/7|+|-x-3/5|-2/6
help me! giup mk voi minh can gap do
rut gon mo ngoac don 1 tru can 2 tat ca mu 2
rut gon
can (12-6can3) - can (21-12can3)
Viết lại đề cho bạn nè
\(\sqrt{12-6\sqrt{3}}-\sqrt{21-12\sqrt{3}}\)
= \(\sqrt{9-6\sqrt{3}+3}-\sqrt{12-12\sqrt{3}+9}\)
= \(\sqrt{3^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{12}\right)^2-2.3.\sqrt{12}+3^2}\)
= \(\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{12}-3\right)^2}\)
= |\(3-\sqrt{3}\)| - |\(\sqrt{12}-3\)|
= \(3-\sqrt{3}-\sqrt{12}+3\)
= \(6-\sqrt{3}-2\sqrt{3}\)
= \(6-3\sqrt{3}\)
tim x
2/9 * x= 6/11
ko can rut gon
\(\frac{2}{9}.x=\frac{6}{11}\)
\(\Leftrightarrow x=\frac{6}{11}:\frac{2}{9}\)
\(\Rightarrow x=\frac{54}{22}\)
2/9 * x = 6/11
x= 6 / 11 : 2/9
x= 6/11 * 9/2
x= 54/22
CHO 2 BIET THUC A= x- can x binh/x-1 va
B= x-4/x+2 can x binh
a. rut gon a va b
rut gon 1 + 7 + 7^2 + ... +7^101
Đặt A = 1 + 7 + 72+...+7101
=> 7A = 7 + 72+73+...+7102
=> 7A-A= 7102-1
6A = 7102-1
\(\Rightarrow A=\frac{7^{102}-1}{6}\)
rut gon 1+7^2+7^3+7^4+...+7^99
Đặt \(A=1+7^2+7^3+7^4+...+7^{99}\)
\(\Rightarrow7A=7\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow7A=7+7^3+7^4+7^5+...+7^{100}\)
\(\Rightarrow7A-A=\left(7+7^3+7^4+7^5+...+7^{100}\right)-\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow6A=7^{100}-1\)
\(\Rightarrow A=\frac{7^{100}-1}{6}\)
đặt S = 1 + 72 + 73 + 74 + .... + 799
=> 7S = 7 + 73 + 74 + 75 + .... 7100
=> 7S - S = (7 + 73 + 74 + 75 + .... + 7100) - (1 + 72 + 73 + 74 + .... + 799)
=> 6S = (7 + 7100) - (1 + 72)
=> 6S = (7 - 1) + (7100 - 72)
=> 6S = 6 + 7100 - 72
=> S = \(\frac{6+7^{100}-7^2}{6}\)
rut gon
can 16a^4b^6 / can 128a^6b^6 (a<0, bkhac 0)
\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\frac{16a^4b^6}{128a^6b^6}}=\sqrt{\frac{1}{8a^2}}=\frac{\sqrt{1}}{\sqrt{8a^2}}=\frac{1}{\sqrt{2}\sqrt{4}\sqrt{a}}\)
=\(\frac{1}{2\sqrt{2}a}\)