\(\dfrac{x-1}{2}\)-\(\dfrac{7x+3}{15}\)\(\le\)\(\dfrac{2x+1}{3}\)+\(\dfrac{3-2x}{5}\)
Giai các bpt sau
a,\(\dfrac{x-1}{2}-\dfrac{7x+3}{15}\le\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\)
b,\(\dfrac{2x+1}{-3}-\dfrac{2x^2+3}{-4}>\dfrac{x\left(5-3x\right)}{-6}-\dfrac{4x+1}{-5}\)
a: \(\Leftrightarrow15\left(x-1\right)-2\left(7x+3\right)\le10\left(2x+1\right)+6\left(3-2x\right)\)
\(\Leftrightarrow15x-15-14x-6\le20x+10+18-12x\)
=>x-21<=8x+28
=>-7x<=49
hay x>=-7
b: \(\Leftrightarrow20\left(2x+1\right)-15\left(2x^2+3\right)< 10x\left(5-3x\right)-12\left(4x+1\right)\)
\(\Leftrightarrow40x+20-30x^2-45< 50x-30x^2-48x-12\)
=>40x-25<2x-12
=>38x<13
hay x<13/38
\(a,\dfrac{x-1}{2}-\dfrac{7x+3}{15}\le\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\\ \Leftrightarrow\dfrac{15\left(x-1\right)}{30}-\dfrac{2\left(7x+3\right)}{30}\le\dfrac{10\left(2x+1\right)}{30}+\dfrac{6\left(3-2x\right)}{30}\\ \Leftrightarrow15x-15-14x-6\le20x+10+18-12x\\ \Leftrightarrow x-21\le8x+28\\ \Leftrightarrow7x+49\ge0\\ \Leftrightarrow x\ge-7\)
\(b,\dfrac{2x+1}{-3}-\dfrac{2x^2+3}{-4}>\dfrac{x\left(5-3x\right)}{-6}-\dfrac{4x+1}{-5}\\ \Leftrightarrow\dfrac{20\left(2x+1\right)}{-60}-\dfrac{15\left(2x^2+3\right)}{-60}>\dfrac{10x\left(5-3x\right)}{-60}-\dfrac{12\left(4x+1\right)}{-60}\\ \Leftrightarrow40x+20-30x^2-45>50x-30x^2-48x-12\\ \Leftrightarrow38x-13>0\\ \Leftrightarrow x>\dfrac{13}{38}\)
a/\(\dfrac{2x+3}{-4}\ge\dfrac{4-x}{-3}\)
b/\(\dfrac{7x-1}{6}+2x\le\dfrac{16-x}{5}\)
a) \(\dfrac{2x+3}{-4}\)≥\(\dfrac{4-x}{-3}\)
=> 3(2x+3)≥4(4-x)
<=> 6x+9≥16-4x
<=> 10x ≥ 7
<=> x ≥\(\dfrac{7}{10}\)
b) \(\dfrac{7x-1}{6}+2x\) ≤ \(\dfrac{16-x}{5}\)=> 5(7x-1) + 30*2x ≤ 6(16-x)<=> 35x - 5 +60x ≤ 96 -6x<=> 101x ≤ 101<=> x ≤ 11) \(\dfrac{7x-3}{x-1}\) = \(\dfrac{2}{3}\)
2) \(\dfrac{2\left(3-7x\right)}{1+x}\) = \(\dfrac{1}{2}\)
3) \(\dfrac{x^{2^{ }}-6}{x}\) = x + \(\dfrac{3}{2}\)
4) \(\dfrac{5}{3x+2}\) = 2x - 1
5) \(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}\) = 0
6) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
1/ ĐKXĐ : \(x\ne1\)
\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\Leftrightarrow x=\dfrac{7}{19}\left(tm\right)\)
Vậy...
b/ \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) ĐKXĐ : \(x\ne-1\)
\(\Leftrightarrow12-28x=1+x\)
\(\Leftrightarrow11=29x\Leftrightarrow x=\dfrac{11}{29}\) \(\left(tm\right)\)
Vậy....
c/ ĐKXĐ : \(x\ne0\)
\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)
\(\Leftrightarrow2x^2-12=2x^2+3x\)
\(\Leftrightarrow3x=-12\Leftrightarrow x=-4\) \(\left(tm\right)\)
Vậy...
4/ ĐKXĐ : \(x\ne-\dfrac{2}{3}\)
\(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)
\(\Leftrightarrow6x^2+4x-3x-2=5\)
\(\Leftrightarrow6x^2+x-7=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{6}\\x=1\end{matrix}\right.\)
Vậy....
5,6 Tương tự nhé !
1)ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-9-2x+2=0\)
\(\Leftrightarrow19x-7=0\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\dfrac{7}{19}\)(nhận)
Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)
2) ĐKXĐ: \(x\ne-1\)
Ta có: \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)
\(\Leftrightarrow4\left(3-7x\right)=x+1\)
\(\Leftrightarrow12-28x-x-1=0\)
\(\Leftrightarrow-29x+11=0\)
\(\Leftrightarrow-29x=-11\)
\(\Leftrightarrow x=\dfrac{11}{29}\)
Vậy: \(S=\left\{\dfrac{11}{29}\right\}\)
3) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)
\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-12=2x^2+6x\)
\(\Leftrightarrow2x^2-12-2x^2-6x=0\)
\(\Leftrightarrow-6x-12=0\)
\(\Leftrightarrow-6x=12\)
\(\Leftrightarrow x=-2\)
Vậy: S={-2}
Giải các phương trình sau:
\(h.\dfrac{3\left(2x-1\right)}{4}-\dfrac{3x+1}{10}+1=\dfrac{2\left(3x+2\right)}{5}\)
\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)
\(k.x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x-\dfrac{1-2x}{3}}{5}\)
\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{4x^2+4x+1}{5}-\dfrac{x^2-2x+1}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{12x^2+12x+3}{15}-\dfrac{5x^2-10x+5}{15}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{12}\)
\(k.x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x-\dfrac{1-2x}{3}}{5}\)
\(\Leftrightarrow\dfrac{15x}{15}+\dfrac{10x+x-1}{15}=\dfrac{15}{15}-\dfrac{9x-1+2x}{15}\)
\(\Leftrightarrow15x+9x-1=14-7x\)
\(\Leftrightarrow31x=15\)
\(\Leftrightarrow x=\dfrac{15}{31}\)
câu h tương tự bài trước câu g mik làm nhé
giải các phương trình sau
1/ \(\dfrac{x-1}{2}-\dfrac{7x+3}{15}=\dfrac{2x+1}{3}+\dfrac{3-2x}{5}\)
2/ \(\dfrac{2\left(3x+1\right)+1}{4}-5=\dfrac{2\left(3x-1\right)}{5}-\dfrac{3x+2}{10}\)
Tìm các số nguyên x,y biết:
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
b) \(\dfrac{24}{7x-3}=\dfrac{-4}{25}\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
d) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
f) \(y\dfrac{5}{y}=\dfrac{86}{y}\) ( \(x\dfrac{2}{5};y\dfrac{5}{y}\) là các hỗn số)
a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
⇒\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)
⇒\(2x+1=21\)
\(2x=21-1\)
\(2x=20\)
⇒\(x=10\)
Đưa các phân thức sau về cùng mẫu
a) \(\dfrac{x}{2x^2+7x-15}\); \(\dfrac{x+2}{x^2+3x-10}\); \(\dfrac{1}{x+5}\)
b) \(\dfrac{1}{-x^2+3x-2}\); \(\dfrac{1}{x^2+5x-6}\); \(\dfrac{1}{-x^2+4x-3}\)
c)\(\dfrac{3}{x^3-1}\); \(\dfrac{2x}{x^2+x+1}\); \(\dfrac{x}{x-1}\)
d)\(\dfrac{x}{x^2-2xy+y^2-x^2}\); \(\dfrac{y}{x^2+2yz-y^2-z^2}\); \(\dfrac{z}{x^2-2xz-y^2+z^2}\)
a: \(\dfrac{x}{2x^2+7x-15}=\dfrac{x}{\left(x+5\right)\left(2x-3\right)}=\dfrac{x^2-2x}{\left(x+5\right)\left(x-2\right)\left(2x-3\right)}\)
\(\dfrac{x+2}{x^2+3x-10}=\dfrac{x+2}{\left(x+5\right)\left(x-2\right)}=\dfrac{\left(x+2\right)\left(2x-3\right)}{\left(2x-3\right)\left(x+5\right)\left(x-2\right)}\)
\(\dfrac{1}{x+5}=\dfrac{\left(2x-3\right)\left(x-2\right)}{\left(2x-3\right)\left(x-2\right)\left(x+5\right)}\)
b: \(\dfrac{1}{-x^2+3x-2}=\dfrac{-1}{\left(x-1\right)\left(x-2\right)}=\dfrac{-\left(x+6\right)\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)}\)
\(\dfrac{1}{x^2+5x-6}=\dfrac{1}{\left(x+6\right)\left(x-1\right)}=\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x+6\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
\(\dfrac{1}{-x^2+4x-3}=\dfrac{-1}{\left(x-1\right)\left(x-3\right)}=\dfrac{-\left(x-2\right)\left(x+6\right)}{\left(x-1\right)\left(x-3\right)\left(x+6\right)\left(x-2\right)}\)
c: \(\dfrac{3}{x^3-1}=\dfrac{3}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x}{x-1}=\dfrac{x\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
Giải các bất phương trình sau:
1) \(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\)
2) \(\dfrac{\left(3-2x\right)x^2}{\left(x-1\right)}\ge0\)
3) \(\dfrac{2x}{x-1}\le\dfrac{5}{2x-1}\)
1.
ĐK: \(x\ne7;x\ne-1;x\ne3\)
\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)
TH1: \(x< -1\)
\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)
\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)
\(\Leftrightarrow x^2-5x+22\ge0\)
\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)
TH2: \(-1< x< 3\)
\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)
\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)
\(\Leftrightarrow-x^2+5x-22\ge0\)
\(\Rightarrow\) vô nghiệm
TH3: \(3< x< 7\)
Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\); \(\dfrac{1}{x-3}>0\)
\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)
TH4: \(x>7\)
\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)
\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)
\(\Leftrightarrow x^2-5x+22\le0\)
\(\Rightarrow\) vô nghiệm
Vậy ...
Các bài kia tương tự, chứ giải ra mệt lắm.
1, \(\dfrac{\left(2x-3\right)\cdot\left(2x+3\right)}{8}=\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\)
2, \(x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}=\dfrac{7x-\dfrac{x-3}{2}}{5}\)
3, \(1-\dfrac{x-\dfrac{1+x}{3}}{3}=\dfrac{x}{2}-\dfrac{2x-\dfrac{10-7}{3}}{2}\)
4, \(\dfrac{x+1}{99}+\dfrac{x+3}{97}+\dfrac{x+5}{95}=\dfrac{x+7}{93}+\dfrac{9+x}{91}+\dfrac{x+11}{89}\)
4.
\(\dfrac{x+1}{99}+\dfrac{x+3}{97}+\dfrac{x+5}{95}=\dfrac{x+7}{93}+\dfrac{x+9}{91}+\dfrac{x+11}{89}\\ \Rightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+5}{95}+1\right)=\left(\dfrac{x+7}{93}+1\right)+\left(\dfrac{x+9}{91}+1\right)+\left(\dfrac{x+11}{89}+1\right)\\ \Rightarrow\dfrac{x+100}{99}+\dfrac{x+100}{97}++\dfrac{x+100}{95}=\dfrac{x+100}{93}+\dfrac{x+100}{91}+\dfrac{x+100}{89}\\ \Rightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}-\dfrac{1}{93}-\dfrac{1}{91}-\dfrac{1}{89}\right)=0\\ \Leftrightarrow x+100=0\Leftrightarrow x=-100\)
\(\text{1) }\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}=\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\\ \Leftrightarrow\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\cdot24=\left[\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\right]24\\ \Leftrightarrow3\left(4x^2-9\right)=4\left(x^2-8x+16\right)+8\left(x^2-4x+4\right)\\ \Leftrightarrow12x^2-27=4x^2-32x+64+8x^2-32x+32\\ \Leftrightarrow12x^2-27=12x^2-64x+96\\ \Leftrightarrow12x^2-12x^2+64x=96+27\\ \Leftrightarrow64x=123\\ \Leftrightarrow x=\dfrac{123}{64}\\ \text{Vậy }S=\left\{\dfrac{123}{64}\right\}\\ \)
\(\text{2) }x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}=\dfrac{7x-\dfrac{x-3}{2}}{5}\\ \Leftrightarrow\left(x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}\right)15=\dfrac{7x-\dfrac{x-3}{2}}{5}\cdot15\\ \Leftrightarrow15x+30-2x-\dfrac{2x-5}{6}=21x-\dfrac{3x-9}{2}\\ \Leftrightarrow15x-2x-\dfrac{2x-5}{6}-21x+\dfrac{3x-9}{2}=-30\\ \Leftrightarrow-8x-\dfrac{2x-5}{6}+\dfrac{3x-9}{2}=-30\\ \Leftrightarrow\left(-8x-\dfrac{2x-5}{6}+\dfrac{3x-9}{2}\right)6=-30\cdot6\\ \Leftrightarrow-48x-2x+5+9x-27=-180\\ \Leftrightarrow-41x==-158\\ \Leftrightarrow x=\dfrac{158}{41}\\ \text{Vậy }S=\left\{\dfrac{158}{41}\right\}\)
\(\text{3) }1-\dfrac{x-\dfrac{1+x}{3}}{3}=\dfrac{x}{2}-\dfrac{2x-\dfrac{10-7}{3}}{2}\\ \Leftrightarrow\left(1-\dfrac{x-1-x}{3}\right)6=\left(\dfrac{x}{2}-\dfrac{2x-1}{2}\right)6\\ \Leftrightarrow6+2=-3x+3\\ \Leftrightarrow-3x=8-3\\ \Leftrightarrow-3x=5\\ \Leftrightarrow x=-\dfrac{5}{3}\\ \\ \text{Vậy }S=\left\{-\dfrac{5}{3}\right\}\)