tinh
A= \(\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-...-\frac{1}{6.4}-\frac{1}{4.2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a,\(\frac{1}{100.98}\)-\(\frac{1}{98.96}\)-\(\frac{1}{96.94}\)-...-\(\frac{1}{4.2}\)
b,Cho A=\(2^{2016}-2^{2015}-2^{2014}-...-2-1.Tính\)A
\(\frac{7}{4}-\left(\frac{1}{2.2}+\frac{1}{4.3}+\frac{1}{6.4}+\frac{1}{8.5}+\frac{1}{10.6}+\frac{1}{12.7}+\frac{1}{14.8}\right):x=0\)
\(\frac{7}{4}-\left(\frac{1}{2.2}+\frac{1}{4.3}+\frac{1}{6.4}+\frac{1}{8.5}+\frac{1}{10.6}+\frac{1}{12.7}+\frac{1}{14.8}\right)\div x=0\)
\((\frac{1}{2.2}+\frac{1}{4.3}+\frac{1}{6.4}+\frac{1}{8.5}+\frac{1}{10.6}+\frac{1}{12.7}+\frac{1}{14.8})\div x=\frac{7}{4}\)
\((\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}+\frac{1}{112})\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\right]\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\right]\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(1-\frac{1}{8}\right)\right]\div x=\frac{7}{4}\)
\(\left(\frac{1}{2}.\frac{7}{8}\right)\div x=\frac{7}{4}\)
\(\frac{7}{16}\div x=\frac{7}{4}\)
\(x=\frac{7}{16}\div\frac{7}{4}\)
\(x=\frac{7}{16}\times\frac{4}{7}\)
\(x=\frac{1}{4}\)
\(\frac{7}{4}-\left(\frac{1}{2\cdot2}+\frac{1}{4\cdot3}+\frac{1}{6\cdot4}+\frac{1}{8\cdot5}+\frac{1}{10\cdot6}+\frac{1}{12\cdot7}+\frac{1}{14\cdot8}\right)\)
\(=\frac{7}{4}-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}+\frac{1}{112}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(1-\frac{1}{8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\cdot\frac{7}{8}\)
\(=\frac{7}{4}-\frac{7}{16}=\frac{28}{16}-\frac{7}{16}=\frac{21}{16}\)
\(\frac{1}{4.3}+\frac{1}{6.4}+\frac{1}{8.5}+\frac{1}{10.6}+.....+\frac{1}{98.56}\) = ?
Các bn giúp mik bài tập này vs chiều nay mik phải nộp rồi . Các bn làm đc phần nào thì lm nhé .Thank nhiều
Bài 1 :Tính Nhanh
a) \(\frac{-5}{11}.\left(\frac{2222}{1010}+\frac{2222}{1515}+\frac{2222}{2121}+\frac{2222}{2828}+\frac{2222}{3636}+\frac{2222}{4545}\right)\)
b) \(\frac{1}{100}-\frac{1}{50.48}-\frac{1}{48.46}-...-\frac{1}{4.2}\)
c) \(\frac{\frac{1}{2}-\frac{1}{3}}{\frac{1}{3}-\frac{1}{4}}.\frac{\frac{1}{4}-\frac{1}{5}}{\frac{1}{5}-\frac{1}{6}}.....\frac{\frac{1}{98}-\frac{1}{99}}{\frac{1}{99}-\frac{1}{100}}\)
Rút gọn: \(A=\frac{4.1}{4.1^4+1}+\frac{4.2}{4.2^4+1}+\frac{4.3}{4.3^4+1}+...+\frac{4.k}{4.k^4+1}\)
\(\frac{4k}{4k^4+1}=\frac{4k}{4k^4+4k^2+1-4k^2}=\frac{4k}{\left(2k^2+1\right)^2-\left(2k\right)^2}=\frac{4k}{\left(2k^2+2k+1\right)\left(2k^2-2k+1\right)}=\frac{1}{2k^2-2k+1}-\frac{1}{2k^2+2k+1}\)
\(=\frac{1}{2k\left(k-1\right)+1}-\frac{1}{2k\left(k+1\right)+1}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+...+\frac{1}{2k\left(k-1\right)+1}-\frac{1}{2k\left(k+1\right)+1}\)
\(=1-\frac{1}{2k\left(k+1\right)+1}=...\)
tìm số nguyên dương n thỏa mãn: \(\frac{4.1}{4.1^4+1}+\frac{4.2}{4.2^4+1}+\frac{4.3}{4.3^4+1}+...+\frac{4n}{4n^4+1}=\frac{220}{221}\)
Ta có: \(4n^4+1=\left(4n^4+4n^2+1\right)-4n^2=\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)\)
\(\frac{4n}{4n^4+1}=\frac{\left(2n^2+2n+1\right)-\left(2n^2-2n+1\right)}{\left(2n^2-2n+1\right)\left(2n^2+2n+1\right)}=\frac{1}{2n^2-2n+1}-\frac{1}{2n^2+2n+1}\)
Thay vào ta có:
\(\frac{4.1}{4.1^4+1}+\frac{4.2}{4.2^2+1}+...+\frac{4n}{4n^4+1}=\frac{220}{221}\)
\(\Leftrightarrow1-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+...+\frac{1}{2n^2-2n+1}-\frac{1}{2n^2+2n+1}=\frac{220}{221}\)
\(\Leftrightarrow1-\frac{1}{2n^2+2n+1}=\frac{220}{221}\)
\(\Leftrightarrow\frac{2n^2+2n}{2n^2+2n+1}=\frac{220}{221}\Rightarrow n=10\)
TÍNH:
a)\(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
b)\(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0\)
\(\frac{1}{50.48}-\frac{1}{48.46}-...-\frac{1}{4.2}\)
Đặt \(A=\frac{1}{50.48}-\frac{1}{48.46}-...-\frac{1}{4.2}\) ta có :
\(A=\frac{1}{48.50}-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{46.48}\right)\) ( xắp sếp lại cho đẹp đội hình thôi :)
Đặt \(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{46.48}\) ta có :
\(2B=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{46.48}\)
\(2B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{46}-\frac{1}{48}\)
\(2B=\frac{1}{2}-\frac{1}{48}\)
\(2B=\frac{23}{48}\)
\(B=\frac{23}{48}:2\)
\(B=\frac{23}{48}.\frac{1}{2}\)
\(B=\frac{23}{96}\)
\(\Rightarrow\)\(A=\frac{1}{48.50}-B=\frac{1}{48.50}-\frac{23}{96}=\frac{1}{2400}-\frac{23}{96}=\frac{-287}{1200}\)
Vậy \(A=\frac{-287}{1200}\)
Chúc bạn học tốt ~
1) So sánh A và B
A=6100.(\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+...+\(\frac{1}{3^{99}}\))+4.299
B=299.(3100+1)