\(A=\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-....-\frac{1}{6.4}-\frac{1}{4.2}\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100.98}+\frac{1}{98.96}+....+\frac{1}{6.4}+\frac{1}{4.2}\right)\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{98}+\frac{1}{98}-\frac{1}{96}+.....+\frac{1}{6}-\frac{1}{4}+\frac{1}{4}-\frac{1}{2}\right)\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)\Rightarrow A=\frac{1}{100}-\frac{1}{100}+\frac{1}{2}\Rightarrow A=\frac{1}{2}\)
\(A=\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-...-\frac{1}{6.4}-\frac{1}{4.2}\)
\(A=\frac{1}{100}-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{96.98}+\frac{1}{98.100}\right)\)
\(A=\frac{1}{100}-\frac{1}{2.2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\left(1-\frac{1}{50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\frac{49}{50}\)
\(A=\frac{2}{200}-\frac{49}{200}=-\frac{47}{200}\)