5(x^2+xy+y^2)=7(x+2y)
nho quan li giai pt no nguyen
thach ai giai dc
Giai hệ PT sau:\(\left\{{}\begin{matrix}2x^2+xy=3y+6\\2y^2+xy=3x+6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy+x^2=1+y\\yx+y^2=1+x\end{matrix}\right.\)
giai pt x y thuoc z : 1+x+x^2+x^3=2^y [lam on nha]ko ai lam dc ah
Giai hệ PT sau \(\left\{{}\begin{matrix}x^2y+xy^2=0\\2x^2+3xy+2y^2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y+xy^2=0\left(1\right)\\2x^2+3xy+2y^2=1\left(2\right)\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow xy\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\x=-y\end{matrix}\right.\)
Với \(x=0\) thế vào pt(2) ta được\(2.0^2+3.0.y+2y^2=1\Rightarrow2y^2=1\Rightarrow y^2=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{\sqrt{2}}\)
Với \(y=0\) thế vào pt(2) ta được
\(2x^2+3.x.0+2.0^2=1\Rightarrow2x^2=1\Rightarrow x^2=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{\sqrt{2}}\)
Với \(x=-y\) thế vào pt(2) ta được
\(2\left(-y\right)^2+3\left(-y\right).y+2y^2=1\Rightarrow2y^2-3y^2+2y^2=1\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=1\\y=1\Rightarrow x=-1\end{matrix}\right.\)
vậy ...
Tìm x,y thuộc Z: xy-3x+2y=-5. câu b. 2xy-x+y=-3............. Cac ban trinh bay cach giai giup mink nhe .Neu ai giai dung mink se tick
Giai pt \(x^2+\sqrt{2x+3}+\sqrt{x-2}=3x+4\)
Giải hệ pt \(\hept{\begin{cases}x^2+xy+y^2=19\left(x-y\right)^2\\x^2-xy+y^2=7\left(x-y\right)\end{cases}} \)
Chắc chắn là ko sai đề !!!
ai làm được cho 10 tk
làm câu nào cũng đc nha !!!!
Bài 1:
ĐKXĐ: \(x\ge2\)
PT \(\Leftrightarrow x^2-6x+9+3\left(x-3\right)+\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+3\left(x-3\right)+\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left[x+\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x-2}+1}\right]=0\)
Cái ngoặc to hiển nhiên > 0 với mọi \(x\ge2\) nên vô nghiệm.
Vậy x = 3
Bài 2:
HPT \(\Leftrightarrow\hept{\begin{cases}x^2+xy+y^2=19\left(x-y\right)^2\\\frac{19}{7}x^2-\frac{19}{7}xy+\frac{19}{7}y^2=19\left(x-y\right)^2\end{cases}}\)
Lấy pt dưới trừ pt trên:
\(\frac{12}{7}x^2-\frac{26}{7}xy+\frac{12}{7}y^2=0\Leftrightarrow\frac{2}{7}\left(2x-3y\right)\left(3x-2y\right)=0\)
Làm nốt ạ!
bạn ơi cho mk hỏi dòng thứ 3 từ trên xuống của bài 1 là sao vậy ????
pham ba hoang nhóm x2 -6x +9 =(x-3)2 rồi mấy kia thì nhân liên hợp bằng cách sử dụng đẳng thức: \(a-b=\frac{a^2-b^2}{a+b}\)
Giai hệ pt:
\(\left\{{}\begin{matrix}x+y+z=7\\x^2+y^2+z^2\\xy=y^2\end{matrix}\right.=21\)
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
giai pt x^2-y^2=xy
(x,y>0)
ai giup minh giai cai bai nay voi
\(\hept{\begin{cases}x^2+y^2+2x+2y=11\\xy\left(x+2\right)\left(y+2\right)=24\end{cases}}\)
voi bai \(\hept{\begin{cases}x+y+xy=1\\x+z+xz=3\\z+y+yz=7\end{cases}}\)
\(pt\left(1\right)\Leftrightarrow x\left(x+2\right)+y\left(y+2\right)=11\)
Đặt a=x(x+2); b=y(y+2) thì: \(hpt\Leftrightarrow\hept{\begin{cases}a+b=11\\ab=24\end{cases}}\)
Khi đó a,b là 2 nghiệm của pt ẩn m:
\(m^2-11m+24=0\Leftrightarrow\left(m-8\right)\left(m-3\right)=0\Rightarrow\hept{\begin{cases}m=8\\m=3\end{cases}}\)
Tới đây bn tự làm tiếp.