tìm x, y,z biết x^2=y^3;y^4=z^5 và x+y-z=30
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
cũng dễ thôi
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Câu 3 tìm x,y,z biết (x-y2+z)2+(y-2)2+(z+3)2=0Câu 3 tìm x,y,z biết (x-y2+z)2+(y-2)2+(z+3)2=0
Câu 3:
<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Câu 4 tương tự.
bài 1 : tìm x ; y biết 4x=7y và x^2+y^2=260
bài 2 tìm x;y;z biết
x/y/z=3:5:(-2)và 5x -y+3z=-16
bài 3 tìm x;y;z biết x:y:z =4/5/6 và x^2-2y^2+z^2=18
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
a)Tìm x,y thuộc z biết rằng (y+1).(xy-1)=3
b)tìm các số x,y,z biết rằng x+y=2 ;y+z=3 ;z+x=-5
tìm x y z biết x/2 = y/3; y/5 = z/6 biết x + y - z = 25
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}=\dfrac{x+y-z}{10+15-18}=\dfrac{25}{7}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{250}{7}\\y=\dfrac{375}{7}\\y=\dfrac{480}{7}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}=\dfrac{x+y-z}{10+15-18}=\dfrac{25}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{25}{7}.10=\dfrac{250}{7}\\y=\dfrac{25}{7}.15=\dfrac{375}{7}\\z=\dfrac{25}{7}.18=\dfrac{450}{7}\end{matrix}\right.\)
1, Tìm x, y, z biết x/2=y/4=z/5 và 2x²+2y²-3z²=-100
2, Tìm x, y, z biết x/2=y/3; x/4=z/9 và x³+y³+z³=-1009
tìm x,y,z biết x/(y+z+1)=y/(x+z+2)=z/(y+x-3)=x+y+z
tìm min p=x^2+x/x+y^2+y/y+z^2+z/z -1/x+y+z biết x^2+y^2+z^2=3
a,Tìm x,y,z biết/: \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và \(x^2-y^2=-16\)
b, Tìm x biết: \(\left|2x+3\right|=x+2\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)