CM: S= n2+3n-38 không chia hết cho 49 với mọi n thuộc N
mn giúp mk vs, mk cần gấp
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CM với mọi n thuộc Z, n không chia hết cho 3 thì (4n+3)2-25 chia hết cho 24
giúp mk vs mn ơi, mk cần gấp lắm
+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3
=> (4n + 3)2 chia 3 dư 1 (1)
+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)2 chia 8 dư 1 (2)
Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1
Mà 25 chia 24 dư 1
=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
chứng minh rằng :B=[n(n^2-2)^2-n^3]chia hết cho 10 với mọi n thuộc Z
mong các bạn giúp đỡ mk vs mk đang cần gấp
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
giúp mk vs ạ, mk cần gấp lắm
a,C/m rằng: mọi n thuộc tập hợp Z dương thì:
(3^n+2-2^n+2+3^n-2^n)chia hết cho 10
b, c/m: A=(36^38+41^33) chia hết cho 7
c, C/m: 10^2006+53 tất cả chia 9 là một số tự nhiên
Bài 3 : Chứng minh
a, ( 3n - 1 )^2 - 4 chia hết cho 3 với mọi số tự nhiên n
b, 100 - ( 7n + 3 )^2 chia hết cho 7 với mọi số tự nhiên n
c, ( 3n + 1 )^2 - 25 chia hết cho 3 với mọi số tự nhiên n
d, ( 4n + 1 )^2 - 9 chia hết cho 8 với mọi số tự nhiên n
Giúp mk vs ạ mk đang cần gấp
Bài 3:
a) Ta có: \(\left(3n-1\right)^2-4\)
\(=\left(3n-1-2\right)\left(3n-1+2\right)\)
\(=\left(3n-3\right)\left(3n+1\right)\)
\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)
b) Ta có: \(100-\left(7n+3\right)^2\)
\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)
\(=\left(10-7n-3\right)\left(10+7n+3\right)\)
\(=\left(7-7n\right)\left(13+7n\right)\)
\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)
c) Ta có: \(\left(3n+1\right)^2-25\)
\(=\left(3n+1-5\right)\left(3n+1+5\right)\)
\(=\left(3n-4\right)\left(3n+6\right)\)
\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)
d) Ta có: \(\left(4n+1\right)^2-9\)
\(=\left(4n+1-3\right)\left(4n+1+3\right)\)
\(=\left(4n-2\right)\left(4n+4\right)\)
\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)
\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)
B1:
a, Tìm STN n sao cho (3n+7) chia hết cho n với n thuộc N*
b, (2n+3)chia hết cho (n-2),n khác 2
B2: CTR : Mọi n thuộc N thì (n2 + n + 1) không chia hết cho 4
MÌNH ĐANG CẦN GẤP LẮM,AI TRẢ LỜI ĐC GIẢI GIÚP MK NHA.ĐÂY LÀ TOÁN ĐT KHỐI 6
Mấy bạn giúp mk vs, mk đang gấp
Tìm n thuộc Z, biết:
a) 3 chia hết cho (n-2)
b) 3n+1 chia hết cho n+1
a) 3 chia hết cho (n-2)
=> n-2 € Ư(3)
Mà Ư(3)={1;-1;-3;3}
=> n-2 € { 1;-1;-3;3}
=> n € { 3;1;-1;5}
Vậy n€ {3;1;-1;5} để 3 chia hết cho n-2
b) 3n+1 chia hết cho n+1
Mà n+1 chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1€ Ư(3)
Mà Ư(3) ={1;-1;3;-3}
=> n+1€{1;-1;3;-3}
=> n€{0;-2;2;-4}
Vậy n€{0;-2;2;-3} để 3n+1 chia hết cho n+1
CMR với mọi số tự nhiên n thì n2+3n+11 không chia hết cho 49
Ta có:
\(n^2+3n+11\)
\(=n^2+3n+18-7\)
\(=\left(n+2\right)\left(n+9\right)-7\)
Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7
Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7
Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49
Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\)
chứng tỏ rằng với mọi số tự nhiên n thì n2 + 5n + 5 không chia hết cho 25
(giúp mk vs đang cần gấp)
Giả sử n2+5n+5 chia hết cho 25
=> n2+5n+5 chia hết cho 5
=> n2 chia hết cho 5 (vì 5n+5 chia hết cho 5)
Mà 5 là số nguyên tố
=> n chia hết cho 5
=> n = 5k (k thuộc N)
Ta có: n2 + 5n + 5 = (5k)2 + 5.5k + 5 = 25k2 + 25k + 5
Vì 25k2 + 25k chia hết cho 25, 5 không chia hết cho 25
=> 25k2 + 25k + 5 không chia hết cho 25 hay n2 + 5n + 5 không chia hết cho 25
=> giả sử sai
Vậy...