\(5\times5\div5\)
\(2000\div5\times5\)
\(2000\div5\times5=2000\)
Ai k mk mk k lại !
\(200\div5\times5\)
\(200\div5\times5=200\)\
Ai k mình mình k lại !
THÁCH CÁC BẠN:
\(5\times5\times5\times5\times5\times5\times5=?\)
AI NHANH MK TICK CHO
\(24\times5^5_{ }+5^2\times5^3\)
`24 xx 5^5 + 5^2 xx 5^3`
`=24 xx 5^5 + 5^5`
`=5^5 (24 +1)`
`=5^5 . 25`
`=5^5 .5^2`
`=5^7`
=24x3125 +\(5^2+5^3\)
=75000+ \(5^5\)
=75000+3125
=78125
\(24\cdot5^5+5^2\cdot5^3\)
\(=24\cdot5^5+5^5\)
\(=5^5\cdot5^2=5^7\)
Chúng mình đã biết \(2\div5=\dfrac{2}{5}\), còn phép chia – 2 cho 5 thì sao?
Ta có: Phân số \(\dfrac{0}{7}\) có tử số là 0, mẫu số là 7
Phân số \(\dfrac{3}{-8}\) có tử số là 3, mẫu số là -8
\(-29\times165+29\times65\)
\(\left\{215-\left[5\times(5\times16-25\times2)-\right]60\right\}\div5^3\)
tính hợp lí
\(-29\times165+29\times65=29\times\left(65-165\right)=29\times\left(-100\right)=-2900\\ ---\\ \left\{215-\left[5\times\left(5\times16-25\times2\right)\right]-60\right\}:5^3\\ =\left\{215-\left[5\times\left(80-50\right)\right]-60\right\}:125\\ =\left\{215-\left[5\times30\right]-60\right\}:125\\ =\left\{215-150-60\right\}:125=5:125=\dfrac{1}{25}\)
thục hiện phép tính
A = \(\dfrac{3}{1\times5}+\dfrac{3}{5\times10}+....+\dfrac{3}{100\times105}\)
B=\(\dfrac{5}{1\times3\times5}+\dfrac{5}{3\times5\times7}+...+\dfrac{5}{99\times101\times103}\)
Có: A=\(\dfrac{3}{1.5}+\dfrac{3}{5.10}+...+\dfrac{3}{100.105}\)
=> A=\(3.\dfrac{5}{5}\left(\dfrac{1}{1.5}+\dfrac{1}{5.10}+...+\dfrac{1}{100.105}\right)\)
=> A= \(3.\dfrac{1}{5}\left(\dfrac{5}{1.5}+\dfrac{5}{5.10}+...+\dfrac{5}{100.105}\right)\)
=> A=\(\dfrac{3}{5}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{105}\right)\)
=> A= \(\dfrac{3}{5}\left(1-\dfrac{1}{105}\right)\)=\(\dfrac{3}{5}.\dfrac{104}{105}=\dfrac{312}{525}\)
thực hiện phép tính
A=\(\frac{3}{1\times5}+\frac{3}{5\times10}+....+\frac{3}{100\times105}\)
B=
\(\dfrac{5}{1\times3\times5}+\dfrac{5}{3\times5\times7}+...+\dfrac{5}{99\times101\times103}\)
Ta có:
\(A=\frac{3}{1\cdot5}+\frac{3}{5\cdot10}+...+\frac{3}{100\cdot105}\)
\(=\frac{3}{5}\cdot\left(\frac{5}{1\cdot5}+\frac{5}{5\cdot10}+...+\frac{5}{100\cdot105}\right)\)
\(=\frac{3}{5}\cdot\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{105}\right)\)
\(=\frac{3}{5}\left(1-\frac{1}{105}\right)=\frac{3}{5}\cdot\frac{104}{105}=\frac{312}{525}\)
giúp mk nhé tính
\(\left(125^3\times7^5-175^5\div5\right)\div2001^{2002}\)
\(\left(125^3\cdot7^5-175^5:5\right):2001^{2002}\)
\(\left(5^9\cdot7^5-7^5\cdot5^{10}:5\right):2001^{2002}\)
\(\left(5^9\cdot\left(7^5-7^5\right)\right):2001^{2002}\)
\(\left(5^9\cdot0\right):2001^{2002}\)
\(0:2001^{2002}\)
= \(0\)