tìm x, y, z sao cho x ^3 - (x+y + z)^ 3 = ( y+ z ) ^ 3 + 34
tìm x, y, z sao cho x ^3 - (x+y + z)^ 3 = ( y+ z ) ^ 3 + 34
tìm x, y thuộc Z sao cho \(\frac{x+y}{x^2-xy+y^2}\)= \(\frac{3}{7}\)
tìm x, y thuộc Z x ^4 - 7^y = 2014
giúp mk đi mọi người ơi
bài x^4-7^y=2014 dùng đồng dư là ra nhé bạn
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
x/3=y/4 y/3=z/5 Mà x-y+z=34 tìm x,y,z
ta có
x/3=y/4=z/5=x-y+z/3-4+5
=34/4=8,5
=> x/3=8,5 =>x=25,5
y/4=8,5=>y=34
z/5=8,5=>z=42,5
Tìm các số nguyên x, y, z sao cho x/y+y/z+z/x=y/x+z/y+x/z=x+y+z=3
Tìm x,y,z;x^3-(x+y+z)^2=(y+z)^3+34
Tìm số nguyên tố x,y,z sao cho x^3+y^3+z^3=x+y+z+2017
Từ :
\(x^3+y^3+z^3=x+y+z+2017\) \(\implies\) \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)
Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)
\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)
\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)
Vì x, y, z là các số nguyên nên
\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3
Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3
Vậy không có số nguyên x,y,z nào thỏa mãn ycbt
Tìm 3 số nguyên dương x,y,z sao cho:
(x-y)^3+(y-z)^3+3./z-x/=27
tìm x , y , z thuộc Z bít
x/3= 4/y gợi ý x/3= 4/y suy ra x,y =34
giải luôn ra cho mình nha ai nhanh mk tick cho
bạn song ngư à . song ngư khẩu phật tâm xà
Tìm các số dương x, y, z sao cho \(x+y+z=3\)
Tìm GTNN của biểu thức M = \(\frac{x}{3-x}+\frac{y}{3-y}+\frac{z}{3-z}\)
Chứng minh cái BĐT phụ này là xong: \(\frac{x}{3-x}\ge\frac{3}{4}x-\frac{1}{4}\) (0 < x < 3)
\(\Leftrightarrow\frac{3\left(x-1\right)^2}{4\left(3-x\right)}\ge0\) (luôn đúng với 0 < x < 3)
Làm nốt.