cm với mọi n\(\in\)N;n>1 ta có
\(A=\frac{1}{^{2^3}}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}< \frac{1}{4}\)
thách mấy thánh trả lời dc?
CM a, A=4a2+4a chia hết cho 8 với mọi a \(\in\)N
b, B=a5-a chia hết cho 5 với mọi a \(\in\)N
a, Ta có: A = 4a2 + 4a
=> A = 4a(a + 1)
Vì 4 chia hết cho 4
a(a+1) chia hết cho 2
=> A chia hết cho 8
b,Ta có: a5 = a4+1 có chữ số tận cùng giống chữ số tận cùng của n
=> a5 - a có chữ số tận cùng bằng 0
=> a5 - a chia hết cho 5 hay B chỉa hết cho 5
cm với mọi n\(\in\)N thì các số sau là số chính phương
A= 111....1555....56
Cho A(n) là \(n^2\left(n^4-1\right)\).CM: A(n) chia hết cho 60 với mọi n \(\in\)N
\(n^2\left(n^4-1\right)=n^2\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right).\left(n^2+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).\left(n^2-4+5\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)
Vì \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3,4,5 mà (3,4,5) = 1
Suy ra tích này chia hết cho 3x4x5 = 60 (1)
Mặt khác suy luận tương tự ta cũng suy ra được 5(n-1).n.(n+1) chia hết cho 60 (2)
Từ (1) và (2) suy ra đpcm
Cho hình thoi ABCD có cạnh là a. Gọi r1 và r2 laf bán kính các đường tròn ngoại tiếp tam giác ABC và ABD.
cmr: \(a.\frac{1}{r^2_1}+\frac{1}{r_2^2}=\frac{4}{a^2}\)
\(b.S_{ABCD}=\frac{8r_1^3r_2^3}{\left(r_1^2+r_2^2\right)^2}\)
CM với mọi n \(\in N\) \(2^n\ge n+1\)
2n = 2 . 2 . 2 ... 2 (n thừa số 2) \(\ge\) 1 (1)
Vì n \(\in\) N nên do đó n + 1 \(\ge\) 1 (2)
Từ (1) và (2) suy ra 2n \(\ge\) n + 1 (dấu = xảy ra <=> n = 0)
Cm:\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{1}{2}\)với mọi n \(\in\) z, n\(\ge2\)
Cho \(a,b,c,d\in Z^+\) thỏa \(a.b=c.d\)
CM : \(A=a^n+b^n+c^n+d^n\) là một hợp số với mọi \(n\in N\)
a) CM: A=\(3+3^2+3^3+3^4+...+3^{4K}\) chia hết cho 4 với k\(\in\)\(Z_+\)
b) CM: với mọi số nguyên n thì số
\(A=n^5-n\) chia hết cho 30
CM
a)25^n+1-25^n chia hết cho 100 với mọi số tự nhiên n
b)n^2(n-1)-2n(n-1) chia hết cho 6 với mọi số nguyên n
\(a,25^{n+1}-25^n=25^n\left(25-1\right)=25^{n-1}\cdot25\cdot24=25^{n-1}\cdot100\cdot6⋮100,\forall n\)
\(b,n^2\left(n-1\right)-2n\left(n-1\right)=n\left(n-1\right)\left(n-2\right)⋮6,\forall n\)(vì là 3 số nguyên liên tiếp)
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.24=25^{n-1}.6.4.25=25^{n-1}.6.100⋮100\forall n\in N\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=n^3-3n^2+2n=\left(n-2\right)\left(n-1\right)n\)
là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^2\left(n-1\right)-2n\left(n-1\right)⋮2.3=6\forall n\in Z\)
cm với mọi n thuộc N* thì n^3+n+2 là hợp số
Theo bài ra, ta có:
n3 + n + 2
= n(n2 + n) + 2.
+ Nếu n lẻ => n2 lẻ => n2 + n chẵn => n2 + n chia hết cho 2 => n(n2 + n) chia hết cho 2 => n(n2 + n) + 2 chia hết cho 2
Mà n(n2 + 2) + 2 lớn hơn 2 => n(n2 +n) + 2 là hợp số hay n3 + n + 2 là hợp số.
+ Nếu n chẵn => n chia hết cho 2 => n(n2 + n) chia hết cho 2 => n(n2 + n) + 2 chia hết cho 2.
Mà n(n2 + n) + 2 lớn hớn 2 => n(n2 + n) + 2 là hợp số hay n3 + n + 2 là hợp số.
Vậy n3 + n + 2 là hợp số với moi n thuộc N*
Cậu trên giải sai rồi, n3 +n + 2= n( n2 +1) +2 chứ sao bằng giống bạn trên được, nếu giống bạn trên thì n( n2 +n) +2 = n3 + n2 +2 rồi
Dễ, đây mà là bài lớp 8, bài lớp 6 thì có.