Những câu hỏi liên quan
NH
Xem chi tiết
NH
Xem chi tiết
PT
19 tháng 1 2016 lúc 13:16

.>

>            tic nhe cac ban

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
HN
3 tháng 11 2016 lúc 16:22

ta có \(\frac{1}{\sqrt{x}}\)\(\frac{2}{2\sqrt{x}}\)\(\frac{2}{\sqrt{x}+\sqrt{x-1}}\)= 2(\(\sqrt{x}-\sqrt{x-1}\))

Áp dụng vào A \(\Rightarrow\)A < 1 + 2(\(\sqrt{2}-\sqrt{1}\)) + 2(\(\sqrt{3}-\sqrt{2}\)) + ... + 2(\(\sqrt{100}-\sqrt{99}\)) = 1 - 2 + \(2\sqrt{100}\)\(2\sqrt{100}-1\)\(2\sqrt{101}-1=B\)

\(\Rightarrow\)A < B

Bình luận (0)
NA
Xem chi tiết
KM
24 tháng 8 2018 lúc 18:09

Ta có \(A=1+2^2+2^3+....+2^{99}+2^{100}\)

\(2A=2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

Suy ra \(2A-A=2^{101}-1=B\)

Do đó A =B

Vậy A =B 

Bình luận (0)
SF
24 tháng 8 2018 lúc 20:09

A = 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 

2A = 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 

2A - A = ( 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 ) - ( 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 ) 

A = 2^101 - 1 

Vì A = 2^101 - 1 và B = 2^101 - 1 

=> A = B 

Vậy A=B

Bình luận (0)
DL
16 tháng 9 2018 lúc 10:48

A=1+2^2+2^3+...+2^99+2^100

2A=2+2^3+2^4+...+2^100+2^101

2A-A=(2+2^3+2^4+...+2^100+2^101)-(1+2^2+2^3+...+2^99+2^100)

A=2^101-[2-(1+2^2)]

A=2^101-3

Vậy A=2^101-3 và B=2^101-1

=> A<B

Bình luận (0)
TN
Xem chi tiết
NT
21 tháng 8 2023 lúc 20:35

2:

a: A=1+2+2^2+2^3+2^4

=>2A=2+2^2+2^3+2^4+2^5

=>A=2^5-1

=>A=B

b: C=3+3^2+...+3^100

=>3C=3^2+3^3+...+3^101

=>2C=3^101-3

=>\(C=\dfrac{3^{101}-3}{2}\)

=>C=D

Bình luận (0)
H24
21 tháng 8 2023 lúc 20:43

Ta có: 

\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)

\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)

Bình luận (0)
BD
21 tháng 8 2023 lúc 20:52

 \(a.5^{27}=\left(5^3\right)^9=125^9\\ 2^{63}=\left(2^7\right)^9=128^9\)

Vì 1289 > 125=> 263 > 527

\(5^{28}=\left(5^4\right)^7=625^7\\ 2^{63}=\left(2^9\right)^7=512^7\)

Vì 6257 > 5127 = > 528 > 263

Đã CMR: \(5^{27}< 2^{63}< 5^{28}\)

\(b.A=1+2+2^2+2^3+2^4\\ 2A=2+2^2+2^3+2^4+2^5\\ 2A-A=\left(2+2^2+2^3+2^4+2^5\right)-\left(1+2+2^2+2^3+2^4+\right)\\ A=2^5-1\\ 2^5-1=2^5-1=>A=B\\ c,C=3+3^2+....+3^{100}\\ 3C=3^2+......+3^{101}\\ 3C-C=\left(3^2+...+3^{101}\right)-\left(3+...+3^{100}\right)\\ 2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}\\ \dfrac{3^{101}-3}{2}=\dfrac{3^{101}-3}{2}=>C=D\)

Bình luận (0)
H24
Xem chi tiết
NH
1 tháng 12 2015 lúc 23:32

papa ko làm thì thui z 2`

a) Đặt A = 1 + 2 + 22 + 23 ...+299 + 2100

2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101

2A - A = 2 + 22 + 23 + 24 + ... + 2100 + 2101 - 1 + 2 + 22 + 23 ...+299 + 2100

A = 21001 - 1 < 2101

Vậy A < 2101

câu b tính trong ngoặc sau đó tính x như thường

Bình luận (0)
NN
1 tháng 12 2015 lúc 23:36

bài này dễ mà. tớ nhắm mắt đọc cũng được

Bình luận (0)
TK
Xem chi tiết
NM
19 tháng 8 2016 lúc 19:30

A=1+21+22+23+...+2100

2A=2+22+23+24+...+2101

2A-A=2101-1

A=2101-1

Ta có 2101>2101-1 nên B>A

Bình luận (0)
DH
19 tháng 8 2016 lúc 19:30

2A=2+2^2+2^3+2^4+....+2^101

=> 2A-A=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+...+2^100)

<=> A=2^101-1 > B=2^101

Bình luận (0)
PD
19 tháng 8 2016 lúc 19:32

2A=2+2^2+...+2^101

=>2A-A=(2+2^2+...+2^101)-(1+2+2^2+...+2^100)

=> A=2^101-1<2^101=B

vậy a<b

Bình luận (0)
NX
Xem chi tiết
OY
4 tháng 10 2021 lúc 20:15

\(A=1+2+2^2+...+2^{101}\)

\(2A=2+2^2+...+2^{102}\)

\(2A=\left(2+2^2+...+2^{102}\right)-\left(1+2+2^2+...+2^{101}\right)\)

\(A=2^{102}-1\)

\(B=5.2^{100}>2^{102}\)

Mà \(2^{102}>2^{102}-1\)

Nên B>A

Bình luận (0)