cho hai đa thức :
M = \(x^2-2xy+y^2\)
N = \(y^2+2xy+x^2+1\)
a, Tính M + N
b, tính M - N
Cho hai đa thức :
\(M=x^2-2xy+y^2\)
\(N=y^2+2xy+x^2+1\)
a) Tính M + N
b) Tính M - N
M + N = \(x^2-2xy+y^2\)+\(y^2+2xy+x^2+1\)
= \(\left(x^2+x^2\right)+\left(-2xy+2xy\right)+\left(y^2+y^2\right)+1\)
= \(2x^2+2y^2+1\)
M - N = \(x^2-2xy+y^2-y^2+2xy+1\)
= \(\left(x^2+x^2\right)+\left(-2xy+2xy\right)+\left(y^2-y^2\right)+1\)
= \(2x^2+1\)
Cho hai đa thức:
M = x2 – 2xy + y2;
N = y2 + 2xy + x2 + 1.
a) Tính M + N;
b) Tính M - N.
a) M + N = x2 – 2xy + y2+ y2 + 2xy + x2 + 1 = 2x2 + 2y2+ 1
b) M - N = x2 – 2xy + y2 - y2 - 2xy - x2 - 1 = -4xy - 1.
Học tốt
Cho hai đa thức:
M = x2 – 2xy + y2;
N = y2 + 2xy + x2 + 1.
a) Tính M + N;
b) Tính M - N.
a/ M + N = x\(^2\)- 2xy + y\(^2\)+ y\(^2\)+ 2xy + x\(^2\)+ 1
= 2x\(^2\)+ 2y\(^2\)+ 1
= 2( x\(^2\)+ y\(^2\)) + 1
b/ M - N = x\(^2\)- 2xy + y\(^2\)- ( y\(^2\)+ 2xy + x\(^2\)+ 1 )
= x\(^2\)- 2xy + y\(^2\)- y\(^2\)- 2xy - x\(^2\)- 1
= -4xy - 1
cho 2 đa thức
M=x2-2xy+y2
N=Y2+2xy+x2+1
a. tính M+N
b. tính M-N
GIÚP MIK NHA AI NHANH MIK TÍCH
\(M=x^2-2xy+y^2\)
\(N=y^2+2xy+x^2+1\)
\(a,M+N=\left(x^2-2xy+y^2\right)+\left(y^2+2xy+x^2+1\right)\)
\(=x^2-2xy+y^2+y^2+2xy+x^2+1\)
\(=\left(x^2+x^2\right)+\left(-2xy+2xy\right)+\left(y^2+y^2\right)+1\)
\(=2x^2+2y^2+1\)
\(b,M-N=\left(x^2-2xy+y^2\right)-\left(y^2+2xy+x^2+1\right)\)
\(=x^2-2xy+y^2-y^2-2xy-x^2-1\)
\(=\left(x^2-x^2\right)+\left(-2xy-2xy\right)+\left(y^2-y^2\right)-1\)
\(=-4xy-1\)
Tính tổng và hiệu của 2 đa thức M và N
a)M= x^2 + y^2 + 2xy và N= x^2 + y^2 - 2xy
b)M = 2,3x + 3,2y - 10 và N= -0,3x + 2,2y - 5
Cho hai đa thức M = x2 y - 2xy + 6 - xy và N = -2x2 y + 2xy +x2 y - 3
a) Thu gọn M và N.
b) Tính M khi x=1 và y=2
c) Tính M+N
a) \(\left\{{}\begin{matrix}M=x^2y-2xy+6-xy=x^2y-3xy+6\\N=-2x^2y+2xy+x^2y-3=-x^2y+2xy-3\end{matrix}\right.\)
b) \(x=1;y=2\Rightarrow M=1^2.2-2.1.2+6-1.2=2\)
c) \(M+N\Rightarrow x^2y-3xy+6+\left(-x^2y\right)+2xy-3=-xy+3\)
a) Cho hai đa thức: M = 2x2 – 2xy – 3y2 + 1; N = x2 – 2xy + 3y2 – 1
Tính M + N; M – N.
b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5
+ Tính P(x) + Q(x)
+ Tính P(x) - Q(x)
a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)
\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)
b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)
\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)
(Nghỉ dịch từ ngày 28/2/2022)
Bài 1:
a) Cho hai đa thức: M = 2x2 – 2xy – 3y2 + 1; N = x2 – 2xy + 3y2 – 1
Tính M + N; M – N.
b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5
+ Tính P(x) + Q(x)
+ Tính P(x) - Q(x)
Bài 2: Tìm x biết:
a) (x - 8 )( x3+ 8) = 0; b) (4x - 3) – ( x + 5) = 3(10 - x)
Bài 3: Cho đa thức: P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.
a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(–1).
Bài 4: Tính nhanh (nếu có thể):
Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM vuông góc với BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.
a) Chứng minh: HB = HC.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).
Chứng minh ΔHDE cân.
d) So sánh HD và HC.
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
cho đa thức M=2x^2y-xy^2+3x-2y và N=2xy^2-2x^2y-5x+2y
a) tính A=M+N,B=N-M
b) tính giá trị của đa thức B khi x=2 và y^2=16
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y