Những câu hỏi liên quan
TU
Xem chi tiết
PQ
29 tháng 10 2018 lúc 17:04

Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)

\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)

\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)

Chúc bạn học tốt ~ 

Bình luận (0)
TU
29 tháng 10 2018 lúc 16:50

mn làm giúp mk vs

Bình luận (0)
PD
29 tháng 10 2018 lúc 17:16

\(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{\sqrt{a^2-b^2}b}\)

\(=\frac{ab-a^2+a^2-b^2}{\sqrt{a^2-b^2}b}\)

\(=\frac{b\left(a-b\right)}{\sqrt{\left(a-b\right)\left(a+b\right)}b}\)

\(=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

b, Thay a = 3b

\(=\sqrt{\frac{3b-b}{3b+b}}=\sqrt{\frac{2}{4}}=\sqrt{\frac{1}{2}}\)

Bình luận (0)
H24
Xem chi tiết
VT
13 tháng 8 2016 lúc 8:44

bài này cũng tương tự câu trên vậy tách màu ra là tính được mà . đâu có khó gì đâu bạn . 

Bình luận (0)
HH
27 tháng 9 2020 lúc 10:33

Biến đổi vế trái :vvv

\(VT=\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)

\(=\frac{a+b}{b^2}.\sqrt{\frac{\left(ab^2\right)^2}{\left(a+b\right)^2}}\)

\(=\frac{a+b}{b^2}.\frac{\left|ab^2\right|}{\left|a+b\right|}\)

\(=\frac{a+b}{b^2}.\frac{b^2.\left|a\right|}{a+b}=\left|a\right|=VP\left(đpcm\right)\)

( Vì a + b > 0 nên | a + b | = a + b ; b> 0 )

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
H24
31 tháng 10 2018 lúc 21:21

Rút gọn bt:

Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)

b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư

Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)

a, Tìm ĐKXĐ . Rút gọn P 

B, Tìm x nguyên để P có gt nguyên

c, Tìm GTNN của P với a >1

Câu 3: Giair các pt 

a, \(\sqrt{\left(2x-1\right)^2}=4\)

b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)

Bình luận (0)
KQ
Xem chi tiết
T8
Xem chi tiết
H24
2 tháng 7 2020 lúc 22:00

Bài 1:

\(A=\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2=2\sqrt{2}-2\sqrt{2}+2\sqrt{5}-2\sqrt{5}-2=-2\)\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)

Bình luận (0)
DH
2 tháng 7 2020 lúc 20:34

Bài 2:

\(a,P=\left(\frac{1}{x+\sqrt{x}}-\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+2\sqrt{x}+1}\left(x>0\right)\)

\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\times\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}\cdot\sqrt{x}}\)

\(=\frac{1-x}{x}\)

\(b,\forall x>0\Leftrightarrow\frac{1-x}{x}>\frac{1}{2}\)

\(\Leftrightarrow2\left(1-x\right)>x\)

\(\Leftrightarrow2-2x>x\)

\(\Leftrightarrow-3x>-2\)

\(\Leftrightarrow x< \frac{2}{3}\)

\(\Rightarrow P>\frac{1}{2}\Leftrightarrow\forall0< x< \frac{2}{3}\)

Bình luận (0)
DT
Xem chi tiết