So sánh
\(A=\frac{5^n-1}{5^{n-1}-1}\) và \(B=\frac{3^n-1}{3^{n-1}-1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
TÌM n THUỘC N*
\(\frac{1}{9}.27^n=3^n\)
\(\frac{1}{2}.2^n+4.2^n=9.5^n\)
SO SÁNH
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}\)VÀ \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^9}\)
cho \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100};N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{100}{101}\)
a/ so sánh M và N
b/ tính M nhân N
c/ CMR : M < 1 / 10
So sánh :A=\(\frac{n^3-9}{n^3+1}\)và \(\frac{n^5-8}{n^5+2}\)với n\(\in\)N
Bài 1:
a) So sánh \(A=\frac{5^{2013}+3}{5^{2014}-1}\)
\(B=\frac{5^{2015}-3}{5^{2016}+1}\)
b) tím số tự nhiên n để \(\frac{n-3}{n+2}\)là số nguyên
mình đã làm ở
https://olm.vn/hoi-dap/question/1282571.html
bạn vào mà tham khảo nhé
k cho mik đi
so sánh
a, \(\frac{2\text{a}-3}{a}\)và \(\frac{2b+3}{b}\) (a,bthuộc z; a,b>0 )
b, \(\frac{n}{n+1}\) + \(\frac{n+1}{n+2}\) và \(\frac{2n+1}{n+3}\) (n thuộc N*)
c, \(\frac{3c+5}{c}\) và \(\frac{3b-5}{d}\) (c,d thuộc Z;d,c<0)
d, \(\frac{n}{2n+1}\) và \(\frac{3n+1}{6n+3}\) ( n thuộc N)
BÀI 1 : So sánh
A = \(\frac{17^{18}+1}{17^{19}+1}\)và B = \(\frac{17^{17}+1}{17^{18}+1}\) So sánh A và B
\(\frac{n}{n+3}\)và \(\frac{n+1}{n+2}\)
\(\frac{2003\times2004-1}{2003\times2004}\)và \(\frac{2004\times2005-1}{2004\times2005}\)
Cho M=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100}\)
N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{100}{101}\)
a, So sánh M và N
b, Tính M, N
c, CM M<\(\frac{1}{10}\)
Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
Ta có : \(\frac{1}{2}< \frac{2}{3}\); \(\frac{3}{4}< \frac{4}{5}\); \(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N
b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)
c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)
\(\Rightarrow M< \frac{1}{10}\)
a, Có \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};......;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}......\frac{99}{100}< N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
b, Hình như là M . N đó bạn:
\(M.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.....\frac{99}{100}.\frac{100}{101}=\frac{1}{101}\)
c, Vì M < N nên M.M < M.N
Mà \(\frac{1}{101}< \frac{1}{100}\)
\(\Rightarrow M< \frac{1}{10}\)
So sánh ( bằng cách nhanh nhất)
a)\(\frac{87}{39}và\frac{2015}{2017}\)
b)\(\frac{n}{n+1}và\frac{n+1}{n+3}\)
c) \(\frac{n}{n+3}va\frac{n-1}{n+4}\)
a) Vì \(\frac{87}{39}>1\)
\(\frac{2015}{2017}< 1\)
\(\Rightarrow\frac{87}{39}>\frac{2015}{2017}\)
\(\frac{n}{n+1}\)và \(\frac{n+1}{n+3}\)
\(\Rightarrow\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\left(n+3\right)}\)
\(\Rightarrow\frac{n+1}{n+3}=\frac{\left(n+1\right)^2}{\left(n+3\right)\left(n+1\right)}\)
\(\Rightarrow n\cdot\left(n+3\right)=n^2+3n\)
\(\Rightarrow\left(n+1\right)^2=n^2+2n+1\)
Dấu bằng chỉ xảy ra khi n = 1
Còn với mọi trường hợp n > 1 thì
\(\frac{n}{n+1}>\frac{n+1}{n+3};n^2+3n>n^2+2n+1\)
\(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
\(\Rightarrow\frac{n}{n+3}=\frac{n\cdot\left(n+4\right)}{\left(n+3\right)\left(n+4\right)}\)
\(\Rightarrow n\cdot\left(n+4\right)=n^2+4n\)
\(\Rightarrow\left(n-1\right)\left(n+3\right)=n^2+2n-3\)
\(\Rightarrow n^2+4n>n^2+2n+3\)
\(\Rightarrow\frac{n}{n+3}>\frac{n-1}{n+4}\)
Bài 1; Tìm a;b \(\in N:\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{8}\)
Bài 2; So sánh :
a)\(\frac{n}{2n+3}và\frac{n+2}{2n+1}\) b)\(\frac{5^{2018}+1}{5^{2019}^{ }+1}\) và \(\frac{5^{2017}+1}{5^{2018}+1}\)
c) \(\frac{8^9+12}{8^9+7}\)và \(\frac{8^{10}+4}{8^{10}-1}\)
Bài 3; Có; A=\(\frac{1.3.5.....43.45}{4.6.8.....46.48}\) và B=\(\frac{2.4.6....44.46}{5.7.9....47.49}\)
a) So sánh A và B
b) Chứng minh : A < \(\frac{1}{133}\)