Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LL
Xem chi tiết
TN
25 tháng 1 2016 lúc 21:35

-1 (MIK LẤY TẤT CẢ SỐ TICK MIK ĐANG CÓ ĐỂ THẾ)

                             (SAI THÌ MIK MẤT HẾT)

                                                                                                                                                         KÍ TÊN

                                                                                                                                                   TẠ UYỂN NHI

Bình luận (0)
LL
25 tháng 1 2016 lúc 21:36

Nhi ơi bạn có thể giảu ra không :)

Bình luận (0)
LL
25 tháng 1 2016 lúc 21:43

Minh ơi lúc nãy mình thử 1 nhưng sai 

Bình luận (0)
PD
Xem chi tiết
HN
27 tháng 5 2016 lúc 19:49

\(a-b=2\left(a+b\right)\Rightarrow2a+2b-\left(a-b\right)=0\Rightarrow a+3b=0\Rightarrow a=-3b\Rightarrow\frac{a}{b}=-3\)

Bình luận (0)
HP
27 tháng 5 2016 lúc 19:51

a-b=2(a+b)

<=>a-b=2a+2b

<=>2a-a=-b-2b

<=>a=-3b

<=>a/b=-3

Bình luận (0)
LD
27 tháng 5 2016 lúc 19:51

Ta có: a - b = 2.(a + b)

=> a -b = 2a + 2b

=> 

Bình luận (0)
QK
Xem chi tiết
HH
Xem chi tiết
H24
8 tháng 9 2015 lúc 17:02

1 bằng 1 

đúng nha

Bình luận (0)
H24
Xem chi tiết
NL
25 tháng 3 2022 lúc 20:44

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

Bình luận (0)
NL
25 tháng 3 2022 lúc 20:56

2.

Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)

\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)

Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)

\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)

\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)

Do \(a;b;c\in\left[0;1\right]\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow ab+c+1\ge a+b+c=2\)

\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)

\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)

\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)

Hoàn toàn tương tự, ta có: 

\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)

Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)

\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)

\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng

Bình luận (0)
HN
Xem chi tiết
KB
Xem chi tiết
LA
10 tháng 3 2016 lúc 15:23

quy đồng rồi rút gọn ta có

a(3x+1)+b(x+2)=14x+14

<=> 3ax+a+bx+2b=14x+14

<=>x(3a+b)+(a+2b)=14x+14

<=>1)   3a+b=14=>b=14-3a thay vào  2)    a+2b=14=>a-28+6a=14 giải pt ta có a=6 và b=-4

a.b=-24

Bình luận (0)
PV
Xem chi tiết
GF
Xem chi tiết