Những câu hỏi liên quan
NC
Xem chi tiết
HB
12 tháng 6 2017 lúc 21:39

a) \(\frac{12x-2}{4x+1}=\frac{12x+3-5}{4x+1}=3-\frac{5}{4x+1}\)
Để f(x) là số nguyên thì 5 chia hết cho (4x+1)
----------lập bảng-------
suy ra x = { 0;1}
b, *f(x)> 0 
=> \(\hept{\begin{cases}12x-2>0\\4x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x>-\frac{1}{4}\end{cases}}\Rightarrow x>\frac{1}{6}\)hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1< 0\end{cases}\Rightarrow x< -\frac{1}{4}}\)

Suy ra f(x)>0 khi \(\orbr{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}\)

*f(x)<0
=> \(\hept{\begin{cases}12x-2>0\\4x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}}\)(loại)   
hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1>0\end{cases}\Rightarrow-\frac{1}{4}< x< \frac{1}{6}}\)

Vậy f(x) < 0 khi -1/4 <x<1/6

Bình luận (0)
NC
14 tháng 6 2017 lúc 5:40

thanks b

Bình luận (0)
IK
Xem chi tiết
H24
Xem chi tiết
H24

câu trả lời là 

xâu chỉ and nhặt kim 

Bình luận (0)
 Khách vãng lai đã xóa
H24

sorry bạn , mình nhầm

Bình luận (0)
 Khách vãng lai đã xóa
VN
20 tháng 4 2021 lúc 22:01

x = - 3 và = - 2 

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
13 tháng 4 2018 lúc 2:34

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 5 2017 lúc 15:20

Chọn C

Bình luận (0)
QT
Xem chi tiết
NL
4 tháng 4 2021 lúc 22:42

\(g\left(x\right)=x^4-4x^3+4x^2+a\)

\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)

TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)

TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)

Bình luận (0)
GH
Xem chi tiết
GH
23 tháng 11 2017 lúc 19:37

giúp mình với

Bình luận (0)
NK
26 tháng 9 2020 lúc 16:36

XIN LỖI ! MÌNH KHONG BIẾT

Bình luận (0)
 Khách vãng lai đã xóa
KR
Xem chi tiết
RR
16 tháng 5 2018 lúc 15:02

Ta có : \(f\left(x\right)=x^2+6x+15=\left(x+3\right)^2+6\ge6\)

Vậy Min = 6 <=> x = - 3

Nhận thấy , giá trị của x càng tăng thì giá trị của f(x) cũng tăng theo 

Vậy f(x) không có giá trị lớn nhất .

Bình luận (0)
NA
16 tháng 5 2018 lúc 15:06

Có: \(f\left(x\right)=x^2+6x+15=x^2+2.3x+3^2+6=\left(x+3\right)^2+6\)

Có: \(\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+3\right)^2+6\ge6\forall x\)

\(\Rightarrow\)GTNN của f(x) là 6 khi: ( x+3 )2 = 0

                                                     x+3 = 0

                                                          x=-3

Vậy GTNN của f(x) là 6 khi x=-3

Chúc bạn học tốt!

Bình luận (0)
RT
Xem chi tiết
H24
18 tháng 10 2021 lúc 21:25

Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)

Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất

Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

g(m) đạt lớn nhất khi m=5/2

m cần tìm là 5/2

Bình luận (0)