3x-1 + 5 . 3x-1 =162
Tìm số tự nhiên x biết:
a) 3x-1 + 5 . 3x-1 = 162 ; b) 2x + 3 + 2x = 144
giải phương trình sau
1/ ( x-3) ^2 =16
2/ (3x-1)^3 =8
3/ (x-11)^3 =-27
4/ x^3 -3x^2 +3x-1'
1/ ( x-3) 2=16
\(\Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
2/ (3x-1)3=8
\(\Rightarrow3x-1=2\\ \Rightarrow3x=3\\ \Rightarrow x=1\)
3/ (x-11)3=-27
\(\Rightarrow x-11=-3\\ \Rightarrow x=8\)
phần 4 mình ko rõ đề
4) \(x^3-3x^2+3x-1=-64\)
\(\Rightarrow x^3-3x^2+3x+63=0\\ \Rightarrow\left(x^3+3x^2\right)-\left(6x^2+18x\right)+\left(21x+63\right)=0\\ \Rightarrow x^2\left(x+3\right)+6x\left(x+3\right)+21\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x^2+6x+21\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x^2+6x+21=0\end{matrix}\right.\)
\(x+3=0\\ \Rightarrow x=-3\)
\(x^2+6x+21=0\\ \Rightarrow\left(x^2+6x+9\right)+12=0\\ \Rightarrow\left(x+3\right)^2+12=0\)
Vì \(\left(x+3\right)^2\ge0;12>0\Rightarrow\left(x+3\right)^2+12>0\Rightarrow x^2+6x+21vônghiệm\)
Vậy \(x=-3\)
a) (2x-1)^3=27
b) (2x-1)^4=81
c) (x-2)^5=-32
d) (3x-1)^4=(3x-1)^6
đ) 5^x +5^x+2=650
g) 3^x-1 +5.3^x-1=162
a) (2x-1)3 = 27
(2x-1)3 = 93
2x-1 = 9
2x = 9+1
2x = 10
x = 10:5
x = 2
Vậy x = 2
b) (2x-1)4 = 81
(2x-1)4 = (\(\pm\)34)
2x-1 = \(\pm\)3
Trường hợp 1:
2x-1 = 3
2x = 3+1
2x = 4
x = 4:2
x = 2
Trường hợp 2:
2x-1 = -3
2x = -3+1
2x = -2
x = -2:2
x = -1
Vậy x \(\in[_{ }2;-1]\)
Vì không tìm thấy ngoặc nhọn nên mình dùng tạm ngoặc vuông nhé
À phần b) bạn sửa dòng (2x-1)4 = (\(\pm\)34) thành (2x-1)4 = (\(\pm\)3)4 nhé
Mình vừa viết nhầm
Tìm số tự nhiên x biết
a)3x+2=11
b)(3x-1).5=10^4:10^3
c)8.5^2x=2.10^2
d)3^x-1+5.3^x-1=162
Tìm x biết :
a) 1/3x+ 2/5(x-1)=4
b)3^x-1+5.3^x-1=162
Tìm x
a) 5x+5x+2=650
b) 3x.1+5.3x.1=162
\(a,5^x+5^{x+2}=650\\ \Rightarrow a,5^x+5^x.25=650\\ \Rightarrow26.5^x=650\\ \Rightarrow5^x=25\\ \Rightarrow5^x=5^2\\ \Rightarrow x=2\)
\(b,3^{x.1}+5.3^{x.1}=162\\ \Rightarrow3^x+5.3^x=162\\ \Rightarrow6.3^x=162\\ \Rightarrow3^x=27\\ \Rightarrow3^x=3^3\\ \Rightarrow x=3\)
a: \(\Leftrightarrow5^x=25\)
hay x=2
a, <=> 5x + 5x .52 =650
<=> 5x +25.5x =650
<=> 26.5x =650
<=> 5x =25
<=> 5x = 52
<=> x=2
b, <=> 6. 3x =162
<=> 3x =27
<=> 3x =33
<=> x=3
Chúc bạn học tốt nha!
1 tìm x
84-2.x=89-271
(3x +1) (x - 2) =0
4 chia hết cho (3x+1)
(2x-6) :(x +1)=0
2.thực hiện phép tính
(-5)^3.2 +8.(-9) -176
6^4: 6^2-84.(-4) +162
TÌm x:
( x + 2)4 + (x -4) 4 = 162
x2 - 5x - 21 = 0
x2 - (x+1)2 = 0
(x - 1).(x+2) - x-2= 0
x2 - 4x +3 = 0
3x ( x-4) +12x - 48 = 0
(2x-1).(5-3x) = (x+2).(5-3x)
d/
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
e/
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
f/
\(\Leftrightarrow3x\left(x-4\right)+12\left(x-4\right)=0\)
\(\Leftrightarrow3\left(x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
g/
\(\Leftrightarrow\left(2x-1\right)\left(5-3x\right)-\left(x+2\right)\left(5-3x\right)=0\)
\(\Leftrightarrow\left(5-3x\right)\left(2x-1-x-2\right)=0\)
\(\Leftrightarrow\left(5-3x\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{5}{3}\end{matrix}\right.\)
a/
Đặt \(x-1=t\)
\(\Rightarrow\left(t+3\right)^4+\left(t-3\right)^4=162\)
\(\Leftrightarrow2t^4+108t^2=0\)
\(\Leftrightarrow2t^2\left(t^2+54\right)=0\)
\(\Leftrightarrow t=0\Rightarrow x=1\)
b/
Bạn coi lại đề, bài này ít nhất phải lớp 9 vì nghiệm xấu
c/
\(\Leftrightarrow x^2-\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow-2x-1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
3x+2\(\sqrt{162+n}\)+5(n+3)=0 (1)
Định n trong phương trình (1) sao cho: x < -3n-9
3x+2\(\sqrt{162+n}\)+5(n+3)=0
ĐKXĐ: n \(\ge\) -162
<=>3x=-2\(\sqrt{162+n}\)-5(n+3)
x<-3n-9
=>3x<-9n-27
=>-9n-27>-2\(\sqrt{162+n}\)-5(n+3)
<=>9n+27>2\(\sqrt{162+n}\)+5(n+3)
<=>4n+12>2\(\sqrt{162+n}\)
<=>2n+6>\(\sqrt{162+n}\)
ĐK có nghiệm: n\(\ge\)-3
<=>4n2+24n+36>162+n
<=>4n2+23n-126>0
<=>\(\dfrac{-23+\sqrt{2545}}{8}< n\)hoặc n<\(\dfrac{-23-\sqrt{2545}}{8}\)
Vậy...
Tìm x,y
a) \(\left(x-5\right)^2=\left(1-3x\right)^2\)
b)\(\left(3x-1\right)^{100}+\left(2y+1\right)^{200}\le0\)
Tìm n
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=> \(3^{n-1}+5.3^{n-1}=162\)
<=> \(3^{n-1}\left(1+5\right)=162\)
<=> \(3^{n-1}.6=162\)
<=> \(3^{n-1}=162:6\)
<=> \(3^{n-1}=27\)
<=> \(3^{n-1}=3^3\)
<=> n - 1 = 3
<=> n = 3 + 1 = 4
Câu 1
a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)
<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)
Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
Bài 2
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=>\(3^{n-1}+5.3^{n-1}=162\)
<=>\(6.3^{n-1}=162\)
<=>\(3^{n-1}=27=3^3\)
<=>\(n-1=3\)
<=>\(n=4\)
b, Dấu = khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
\(pt< =>6.3^{n-1}=162< =>3^{n-1}=3^3< =>n=4\)