Những câu hỏi liên quan
CD
Xem chi tiết
TD
23 tháng 7 2018 lúc 8:55

ta có \(a^3+b^3+a^2c+b^2c-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

mà a+b+c=0

\(\Rightarrow a^3+b^3+a^2c+b^2c-abc=\left(a^2-ab+b^2\right).0=0\left(đpcm\right)\)

Bình luận (0)
MM
Xem chi tiết
NT
2 tháng 1 2019 lúc 20:24

Ta có: a+b+c =0 => c= -a -b

Ta có a3 +a2c -abc + b2c +b3

= (a3 +b3) +c(a2 -ab +b2)

= (a3 +b3) +(-a -b)(a2 -ab +b2)

= (a3 +b3) -(a +b)(a2 -ab +b2)

= (a3 +b3) -a3 -b3 = 0

Vậy a3 +a2c -abc +b2c +b3 =0

Bình luận (0)
KT
Xem chi tiết
GL
16 tháng 6 2019 lúc 13:48

https://olm.vn/hoi-dap/detail/19699450579.html

Xem ở link này(mik gửi cho)

Học tốt!!!!!!!!!!!

Bình luận (0)

a^3 + a^2c - abc + b^2c + b^3
= a^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a
= a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a
= -a^2b-abc-b^2a
= -ab(a+b+c)=-ab*0 = 0
vậy đa thức này bằng 0

Bình luận (0)

a+b+c=0
a^3 + a^2c - abc + b^2c + b^3 
=(a^3+a^2b+a^2c)-(a^2b+ab^2+abc)+(b^2c+b^3+ab^2)
=a^2(a+b+c)-ab(a+b+c)+b^2(a+b+c)
=0+0+0
=0

Bình luận (0)
LK
Xem chi tiết
TT
Xem chi tiết
NQ
21 tháng 5 2019 lúc 21:24

Có : \(a^3+a^2c-abc+b^2c+b^3\)

= \(\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)

= \(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

= ( a+b+c) ( \(a^2-ab+b^2\)) mà a+b+c=0

=> \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)

Bình luận (1)
KH
Xem chi tiết
MS
18 tháng 9 2018 lúc 18:00

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(\Rightarrow a^2\left(a+c\right)-abc+b^2\left(b+c\right)=0\)

\(\Rightarrow-a^2b-abc-b^2a=0\)

\(\Rightarrow a^2b+abc+b^2a=0\)

\(\Rightarrow ab\left(a+b+c\right)=0\)(đúng)

Bình luận (1)
H24
Xem chi tiết
HT
3 tháng 11 2019 lúc 19:56

a:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)(vì a+b=c=0)

Bình luận (0)
 Khách vãng lai đã xóa
HT
3 tháng 11 2019 lúc 20:00

câu b bn xem ở link này nha!

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
BT
3 tháng 11 2019 lúc 20:03

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)( vì a+b+c=0)

Vậy \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)

\(b,A=bc\left(a+d\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=bc\left(a+d\right)\left[\left(b-a\right)+\left(a-c\right)\right]-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=-bc\left(a+d\right)\left(a-b\right)+bc\left(a+d\right)\left(a-c\right)-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=b\left(a-b\right)\left[a\left(c+d\right)-c\left(a+d\right)\right]+c\left(a-c\right)\left[b\left(a+d\right)-a\left(b+d\right)\right]\)

\(=b\left(a-b\right)\cdot d\left(a-c\right)+c\left(a-c\right)\cdot d\left(b-a\right)\)

\(=d\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TL
17 tháng 2 2018 lúc 21:04

\(A=a^3+a^2c-abc+b^2c+b^3\\ =\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\\ =\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a^2-ab+b^2\right)c\\ =\left(a+b+c\right)\left(a^2-ab+b^2\right)\\ Thay\text{ }a+b+c=0,\text{ }ta\text{ }được:\text{ }\\ A=\left(a+b+c\right)\left(a^2-ab+b^2\right)\\ =0\cdot\left(a^2-ab+b^2\right)\\ =0\)

Vậy \(A=0\) tại \(a+b+c=0\)

Bình luận (0)
KT
Xem chi tiết
H24
18 tháng 9 2019 lúc 20:42

\(a^3+a^2c-abc+b^2c+b^3.\)

\(=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

theo đề ta có \(a+b+c=0\)

\(\Rightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

\(=\left(a^2-ab+b^2\right)\cdot0=0\)

\(\Rightarrow a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)

Bình luận (0)
H24

Bài làm

Ta có: \(a^3+a^2c-abc+b^2c+b^3\)

\(=a^3+b^3+\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)\)

Thay \(a+b+c=0\)và biểu thức trên ta được:

\(=0.\left(a^2-ab+b^2\right)\)

\(=0\)( đpcm )

~ Bài này khó v~, mất nửa tiếng ms nghĩ ra. ~
# Học tốt #

Bình luận (0)