Những câu hỏi liên quan
NP
Xem chi tiết
NP
11 tháng 8 2021 lúc 20:13

nãy đăng ảnh nhưng không hiện, lại phải mất công đánh lại :Đ

 

Bình luận (0)
NT
11 tháng 8 2021 lúc 20:27

a: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

b: Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

 

Bình luận (1)
NT
11 tháng 8 2021 lúc 22:37

c: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(=x-\sqrt{x}\)

Bình luận (0)
DV
Xem chi tiết
NM
10 tháng 11 2021 lúc 14:52

\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Có 

Bình luận (0)
H24
Xem chi tiết
H24
28 tháng 7 2023 lúc 20:36

Với `x >= 0,x ne 4` có:

`M=[(\sqrt{x}+1)(\sqrt{x}+2)+2\sqrt{x}(\sqrt{x}-2)-2-5\sqrt{x}]/[(\sqrt{x}-2)(\sqrt{x}+2)]`

`M=[x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}]/[(\sqrt{x}-2)(\sqrt{x}+2)]`

`M=[3x-6\sqrt{x}]/[(\sqrt{x}-2)(\sqrt{x}+2)]=[3\sqrt{x}]/[\sqrt{x}+2]`

____________

`N=(1/[\sqrt{a}-1]-1/\sqrt{a}):([\sqrt{a}+1]/[\sqrt{a}-2]-[\sqrt{a}+2]/[\sqrt{a}-1])`

      - Biểu thức `N` là như vầy?

Với `a > 0,a ne 1,a ne 4` có:

`N=[\sqrt{a}-\sqrt{a}+1]/[\sqrt{a}(\sqrt{a}-1)]:[(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}+2)(\sqrt{a}-2)]/[(\sqrt{a}-2)(\sqrt{a}-1)]`

`N=1/[\sqrt{a}(\sqrt{a}-1)].[(\sqrt{a}-2)(\sqrt{a}-1)]/[a-1-a+4]`

`N=[\sqrt{a}-2]/[3\sqrt{a}]`

Bình luận (1)
GH
28 tháng 7 2023 lúc 20:38

Với \(x\ge0;x\ne4\)

Khi đó:

\(M=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{x-4}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}-\dfrac{2+5\sqrt{x}}{x-4}\\ =\dfrac{x+2\sqrt{x}+\sqrt{x}+2}{x-4}+\dfrac{2x-4\sqrt{x}}{x-4}-\dfrac{2+5\sqrt{x}}{x-4}\\ =\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\\ =\dfrac{3x-6\sqrt{x}}{x-4}\\ =\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

Với \(a>0;a\ne1;a\ne4\) 

Khi đó:

\(N=(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\dfrac{\sqrt{a}}{a-\sqrt{a}}-\dfrac{\sqrt{a}-1}{a-\sqrt{a}}\right):\left(\dfrac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{a-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ =\dfrac{1}{a-\sqrt{a}}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\\ =\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right).3}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Bình luận (2)
DN
28 tháng 7 2023 lúc 21:00

loading...

Bình luận (0)
NP
Xem chi tiết
NT
23 tháng 8 2021 lúc 21:13

1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

Bình luận (0)
NT
23 tháng 8 2021 lúc 22:30

2: Ta có: \(A=\left(\dfrac{x+2\sqrt{x}}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{x+2\sqrt{x}-x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{1}{x-1}\)

3: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

Bình luận (0)
QE
Xem chi tiết
NT
17 tháng 7 2021 lúc 22:33

undefinedundefinedundefined

Bình luận (1)
QE
17 tháng 7 2021 lúc 22:20

Làm ơn giúp mình với... :(

Bình luận (0)
QE
17 tháng 7 2021 lúc 22:38

bạn chụp rõ hơn dc không ạ? :( 

Bình luận (2)
AK
Xem chi tiết
H24
27 tháng 6 2023 lúc 14:49

\(a,\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\left(dkxd:a\ne9,a\ge0\right)\)

\(=\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)-3\left(\sqrt{a}-3\right)-a+2}{a-9}\)

\(=\dfrac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{a-9}\)

\(=\dfrac{11}{a-9}\)

\(b,\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)

\(=\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

Bình luận (3)
H24
27 tháng 6 2023 lúc 21:32

\(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\left(\text{đ}k\text{x}\text{đ}:a\ge0;a\ne9\right)\\ =\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a-3}\right)\left(\sqrt{a+3}\right)}-\dfrac{3\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\dfrac{a-2}{\left(\sqrt{a}+3\right)\left(\sqrt{a-3}\right)}\\ =\dfrac{a+3\sqrt{a}-\left(3\sqrt{a}-9\right)-\left(a-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\\ =\dfrac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\\ =\dfrac{11}{\left(\sqrt{a}-3\right)\left(\sqrt{a+3}\right)}\)

\(b,\dfrac{a+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\right)\\ =\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x+1}\right)}\\ =\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

Bình luận (0)
KT
Xem chi tiết
LL
31 tháng 10 2021 lúc 9:56

a) ĐKXĐ: \(x>0,x\ne1\)

\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2\sqrt{x}}{\sqrt{x}-1}=\dfrac{2\sqrt{x}}{x+\sqrt{x}+1}\)

Bình luận (1)
NM
Xem chi tiết
NT
27 tháng 3 2022 lúc 9:57

3. D

4. A

5. C

6. B

7. D

Bình luận (7)
HT
27 tháng 3 2022 lúc 10:05

\(\Leftrightarrow A=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}^2-1}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

         \(=\dfrac{2x+2\sqrt{x}+2-\left(\sqrt{x}^2+1-2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{2x+2\sqrt{x}+2-x-1+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+4\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\=\dfrac{x+4\sqrt{x}+1}{x-1} \)

Bình luận (0)
PN
Xem chi tiết
NT
28 tháng 8 2021 lúc 21:41

a: Ta có: \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b: Ta có: \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}-1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}+1+1\)

\(=a-\sqrt{a}+2\)

Bình luận (0)
H24
28 tháng 8 2021 lúc 21:41

a,ĐKXĐ: tự tìm :v

 \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)

\(=\dfrac{15\sqrt{x}-11}{\left(x+2\sqrt{x}+1\right)-4}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+1\right)^2-4}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{2x+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6+2x+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{9\sqrt{x}-x-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\left(9\sqrt{x}-9\right)-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{9\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(10-\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\dfrac{10-\sqrt{x}}{\sqrt{x}+3}\)

Bình luận (0)