Chúng minh rằng : A = (-7)+(-7)^2+...+(-7)^2006+(-7)^2007 chia hết cho 43
A= (-7)+(-7)^2+......+(-7)^2006+(-7)^2007
CM rằng : A chia hết cho 43
A = (-7) + (-7)2 + ...+ (-7)2006 + (-7)2007
A = [ (-7) + (-7)2 + (-7)3 ] + [ (-7)4 + (-7)5 + (-7)6 ] + ... + [ (-7)2005 + (-7)2006 + (-7)2007 ]
A = (-7) . [ 1 + (-7) + (-7)2 ] + (-7)4 . [ 1+ (-7) + (-7)2 ] + ... + (-7)2005 . [ 1 + (-7) + (-7)2 ]
A = (-7) . 43 + (-7)4 . 43 + ... + (-7)2005 . 43
A = 43 . [ (-7) + (-7)4 + ... + (-7)2005 ]
=>A chia hết cho 43
Vậy A chia hết cho 43
a) Tính tổng: A=(-7)+(-7)2+...+(-7)2006+(-7)2007. CMR: A chia hết cho 43.
b) Chứng minh rằng điều kiện cần và đủ để m2+m.n+n2 chia hết cho 9 là: m, n chia hết cho 3.
\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.
A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)
A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)
A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm
b)\(m^2-2mn+n^2+3mn\)
=\(\left(m-n\right)^2+3mn⋮9\)
=\(3mn⋮3\)
\(\Rightarrow\left(m-n\right)^2⋮3\)
\(\Rightarrow\left(m-n\right)^2⋮9\)
\(\Rightarrow3mn⋮9\)
\(\Rightarrow mn⋮3\)
\(\Rightarrow\)m hoạc n\(\)\(⋮\)3
Giả sử m\(⋮\)3,m-n\(⋮\)
\(\Rightarrow\)n\(⋮3\)
\(\Rightarrow\)dpcm
1)
a)Tính tổng :A= (-7) +(-7)^2 +....+ (-7)^2006 +(-7)^2007 . Chứng minh rằng A chia hết cho 4
Tính tổng : A=\(\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2006}+\left(-7\right)^{2007}\). chứng minh rằng:a chia hết cho 43
Cho A=(-7)+(-7)2+(-7)3+...+(-7)2007
Chứng minh rằng A chia hết cho 43
\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6+...+\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(A=\left(-7\right)\left(1+-7+7^2\right)+\left(-7\right)^4\left(1+-7+7^2\right)+...+\left(-7\right)^{2005}\left(1+-7+7^2\right)\)
\(A=\left(-7\right)\cdot43+\left(-7\right)^4\cdot43+...+\left(-7\right)^{2005}\cdot43\)
\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2008}\right]⋮43\left(đpcm\right)\)
Tính tổng :A=(-7)+(-7)2+(-7)3+...+(-7)2006+(-7)2007
CMR A chia hết cho 43
ta có
\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+..\left(-7\right)^{2007}\)
\(\Rightarrow-7A=\left(-7\right)^2+\left(-7\right)^3+..+\left(-7\right)^{2008}\)
Lấy hiệu hai đẳng thức ta có
\(8A=\left(-7\right)-\left(-7\right)^{2008}\Rightarrow A=-\frac{7+7^{2008}}{8}\)
còn A không chia hết cho 43 nhé
chứng minh rằng
1. (10^10 +10^16+ 10^17)chia hết cho 555
2.(84^7- 27^9 -9^13) chia hết cho 15
3. (5^7-5^6+5^5)chia hết cho 21
4. (7^6+7^5-7^4) chia hết cho 77
5.(4^13+ 32^5-8^8) chia hết cho 5
6.(2006^1000 +2006^999) chia hết cho 2007
7.(43^43 -17^17) chia hết cho 10
8. (7^1000- 3^1000) chia hết cho 10
9( 3^2016 +3^ 2015 - 3^2014)chia hết cho 11
10.(36^36 -9^10)chia hết cho 45
đăng từng bài rồi mình giải cho nha
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
bạn biết làm hết rồi, chỉ còn câu 2 chưa làm được đúng ko, vậy mình làm cho nhé, nhưng mà mình nghĩ là đề là 81 chứ ko phải 84 đâu
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{25}\left(3^3-3^2-3\right)=3^{25}.15\) chia hết cho 15
Vậy 817-279-913 chia hết cho 15 (đpcm)
chứng minh rằng
1. (10^10 +10^16+ 10^17)chia hết cho 555
2.(84^7- 27^9 -9^13) chia hết cho 15
3. (5^7-5^6+5^5)chia hết cho 21
4. (7^6+7^5-7^4) chia hết cho 77
5.(4^13+ 32^5-8^8) chia hết cho 5
6.(2006^1000 +2006^999) chia hết cho 2007
7.(43^43 -17^17) chia hết cho 10
8. (7^1000- 3^1000) chia hết cho 10
9( 3^2016 +3^ 2015 - 3^2014)chia hết cho 11
10.(36^36 -9^10)chia hết cho 45
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
A= -7+(-7)^2+(-7)^3+...+(-7)^2007.Chứng minh A chia hết cho 43
Ta có : A = -7 + (-7)2 + (-7)3 + ....... + (-7)2007
=> -7A = (-7)2 + (-7)3 + ....... + (-7)2008
=> -7A - A = (-7)2008 - (-7)
=> -8A = (-7)2008 + 7
=> A = .........................