Tìm giá trị nguyên lớn nhất của biểu thức sau với x là số nguyên: \(\frac{32-2x}{11-x}\)
Tìm giá trị lớn nhất của các biểu thức sau với x là số nguyên :
a ) A = \(\frac{17}{13-x}\)
b ) B = \(\frac{32-2x}{11-x}\)
a) Để A lớn nhất thí 13 - x nhỏ nhất hay x lớn nhất
+ Với x > 13 thì 13 - x < 0 \(\Rightarrow A=\frac{17}{13-x}< 0\left(1\right)\)
+ Với x < 13, do x lớn nhất nên x = 12, khi đó
\(A=\frac{17}{13-12}=\frac{17}{1}=17\left(2\right)\)
So sánh (1) với (2) ta thấy (2) lớn hơn
Vậy \(A_{Max}=17\) khi x = 12
b) \(B=\frac{32-2x}{11-x}=\frac{10+22-2x}{11-x}=\frac{10+2.\left(11-x\right)}{11-x}=\frac{10}{11-x}+\frac{2.\left(11-x\right)}{11-x}=\frac{10}{11-x}+2\)
Để B lớn nhất thì \(\frac{10}{11-x}\) lớn nhất
<=> 11 - x nhỏ nhất hay x lớn nhất
+ Với x > 11 thì 11 - x < 0 \(\Rightarrow\frac{10}{11-x}< 0\Rightarrow B< 2\left(1\right)\)
+ Với x < 11, do x lớn nhất nên x = 10, khi đó
\(B=\frac{32-2.10}{11-10}=\frac{32-20}{1}=12\left(2\right)\)
So sánh (1) với (2) ta thấy (2) lớn hơn
Vậy \(B_{Max}=12\) khi x = 10
a)Để A đạt GTLN
=>Mẫu đạt giá trị dương nhỏ nhất
\(\Rightarrow13-x=1\)
\(\Rightarrow x=12\)
b)tương tự
Tìm Giá trị lớn nhất của biểu thức sau với x là số nguyên
A=\(\frac{32-x}{11-x}\)
32-2x chứ nhỉ
Bài 1 Tìm số nguyên x để biểu thức sau đạt giá trị lớn nhất
\(A=\frac{17}{x-13}\) \(B=\frac{17-x}{x-11}\)
Bài 2 Tìm số nguyên x để các biểu thức sau đạt giá trị lớn nhất
\(A=\frac{17}{13-x}\) \(B=\frac{32-2x}{11-x}\)
giải giùm mình với !
Bài A:
=>17\(⋮\) x-13
x-13\(\in\) Ư(17)
x-13=1
x=13+1
x=14
x-13=17
x=17+13
x=30
bạn tự làm tiếp nha
Tìm giá trị nguyên lớn nhất của biểu thức sau với x thuộc Z
a) \(\frac{17}{3-x}\)
b) \(\frac{32-2x}{11-x}\)
Mik cần gấp nhé
Ai làm đúng mik sẽ Tick cho ng đó nhé
a) Để \(\frac{17}{3-x}\) đạt giá trị nguyên lớn nhất
=> 3 - x đạt giá trị nhỏ nhất \(\left(3-x\ne0\right)\) ( x thuộc Z)
\(3-x\ge1\)
Dấu "=" xảy ra khi
3-x = 1
x = 2
=> giá trị lớn nhất của 17/3-x = 17/3-2 = 17/1 = 17
KL: giá trị lớn nhất của 17/3-x là 17 tại x = 2
b) Đặt \(B=\frac{32-2x}{11-x}=\frac{12+22-2x}{11-x}=\frac{12+2.\left(11-x\right)}{11-x}=\frac{12}{11-x}+2\)
Để B đạt giá trị nguyên lớn nhất
=> 12/11-x đạt giá trị nguyên lớn nhất
=> 11 - x đạt giá trị nguyên nhỏ nhất ( 11 - x khác 0, x thuộc Z)
\(11-x\ge1\)
Dấu "=" xảy ra khi
11 - x = 1
x = 10
=> giá trị lớn nhất của B là: B = 12/11-x +2 = 12/11-10 + 2 = 12/1 + 2 = 12 + 2 = 14
KL: giá trị lớn nhất của B = 14 tại x = 10
xl bn nha, mk tính nhầm
b) \(B=\frac{10+22-2x}{11-x}=\frac{10+2.\left(11-x\right)}{11-x}=\frac{10}{11-x}+2\)
...
=> giá trị nguyên lớn nhất của B = 10/11-x + 2 = 10/11-10 + 2 = 10 + 2 = 12
KL: giá trị nguyên lớn nhất của B = 12 tại x = 10
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Với giá trị nguyên nào của x thì các biểu thức sau có giá trị lớn nhất. Tìm giá trị lớn nhất đó:
A=\(\frac{10-x}{2-x}\)
B=\(\frac{15-2x}{4-x}\)
tìm giá trị nguyên của x để biểu thức :
B = \(\frac{25-2x}{11-x}\) đạt giá trị lớn nhất
Tìm số nguyên x để biểu thức \(B=\frac{32-2x}{11-x}\) đạt gái trị lớn nhất
\(B=\frac{32-2x}{11-x}=\frac{11-x+21-x}{11-x}=1+\frac{21-x}{11-x}=1+\frac{11-x+10}{11-x}=2+\frac{10}{11-x}\)
để B lớn nhất thì \(\frac{10}{11-x}\)lớn nhất
\(\Rightarrow11-x\)nhỏ nhất(khác 0)
\(\Rightarrow x=10\)
\(\Rightarrow B=12\)tại \(x=10\)
cho biểu thức P=\(\dfrac{3-2x}{2-x}\)với x là số nguyên . Tìm giá trị lớn nhất của P
\(P=\dfrac{2x-3}{x-2}=\dfrac{2x-4+1}{x-2}=2+\dfrac{1}{x-2}\)
P max khi x-2=1
=>x=3
Cho biểu thức: \(P=\left(\frac{x}{x^2-25}+\frac{5-x}{x^2+5x}\right):\frac{2x-5}{x^2+5x}-\frac{2x}{5-x}\)
a. Rút gọn biểu thức P
b. Tìm giá trị nguyên lớn nhất của x để P có giá trị là 1 số nguyên
a) Rút gọn :
\(ĐKXĐ:x\ne\pm5\)
Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{2x-5}{x\left(x+5\right)}-\frac{2x}{5-x}\)
\(=\left(\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right):\frac{\left(2x-5\right)\left(x-5\right)+2x^2\left(x+5\right)}{x\left(x+5\right)\left(x-5\right)}\)
\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)\left(x-5\right)}{ }\)
Tui đang định làm tiếp đó, nhưng khẳng định đề này hơi sai sai ở vế bị chia. Bạn xem lại đc k ?