Những câu hỏi liên quan
PB
Xem chi tiết
CT
27 tháng 4 2019 lúc 3:22

Chọn B.

Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )  

Suy ra phương trình mặt phẳng ( Q ) :   x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .  

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 1 2019 lúc 6:00

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 8 2019 lúc 16:19

Đáp án B

Phương trình mặt phẳng (Q)  dạng: x - 2y - 3z + m = 0 (m ≠ 10).

 (Q) đi qua điểm A(2; -1; 0) nên ta  2 + 2 + m = 0 <=> m = -4.

Vậy phương trình mặt phẳng (Q)  x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 2 2019 lúc 5:26

Đáp án C.

Gọi điểm H là hình chiếu của A 4 ; 1 ; − 2  trên mặt phẳng O x z , khi đó H 4 ; 0 ; − 2 .

Điểm  A' đối xứng với A 4 ; 1 ; − 2  qua mặt phẳng   O x z nên H 4 ; 0 ; − 2  là trung điểm AA'  . Khi đó  A ' 2 x H − x A ; 2 y H − y A ; 2 z H − z A → A ' 4 ; − 1 ; − 2

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 8 2019 lúc 5:38

Đáp án C.

Hình chiếu của A(1 ;2 ;3) lên trục Ox là M(1;0;0)

Hình chiếu của A(1 ;2 ;3) lên trục Oy là N(0;2;0)

Hình chiếu của A(1 ;2 ;3) lên trục Ox là P(0;0;3)

Phương trình mặt phẳng (P) cần tìm là:

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 9 2017 lúc 10:54

Đáp án B

Phương pháp: (P)//(Q): x+2y+3z+2 = 0 => (P): x+2y+3z+m, m≠2

Thay tọa độ điểm A vào phương trình mặt phẳng (P) và tìm hằng số m

Cách giải:

(P)//(Q): x+2y+3z+2 = 0 => (P): x+2y+3z+m, m≠2

Mà 

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 4 2017 lúc 18:24

Đáp án B

Phương pháp:  

Thay tọa độ điểm A vào phương trình mặt phẳng (P) và tìm hằng số m

Cách giải:

Mà (thỏa mãn)

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 1 2017 lúc 2:45

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 11 2018 lúc 7:09

Chọn đáp án A

Mặt phẳng (Q) đi qua điểm A(1;-1;2) và song song với P : 2 x - y + z + 1 = 0 nên có phương trình:

Bình luận (0)