Trong không gian Oxyz, cho mặt phẳng α : 2 x + 3 y - 2 z + 12 = 0 . Gọi A, B, C lần lượt là giao điểm của α với 3 trục tọa độ, đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC và vuông góc với α có phương trình là
A. x + 3 2 = y + 2 3 = z - 3 - 2
B. x + 3 2 = y - 2 - 3 = z - 3 2
C. x + 3 2 = y - 2 3 = z - 3 - 2
D. x - 3 2 = y - 2 3 = z + 3 - 2
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (α) đi qua hai điểm A(3;1;-1), B(2;-1;4) và vuông góc với mặt phẳng ( β ) : 3 x + y - 2 z + 5 = 0 là:
A. x+13y+5z+5=0
B. x+13y-5z+5=0
C. x-13y+5z+5=0
D. x-13y-5z+5=0
Trong không gian với hệ tọa độ Oxyz cho hai điểm P(2;0;-1), Q(1;-1;3) và mặt phẳng P : 3 x + 2 y - z + 5 = 0 . Gọi α là mặt phẳng đi qua P, Q và vuông góc với (P), phương trình của mặt phẳng α là
A. α : -7x + 11y + z - 3 = 0
B. α : 7x - 11y + z - 1 = 0
C. α : -7x + 11y + z + 15 = 0
D. α : 7x - 11y - z + 1 = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x+y-2z-2 = 0 và đường thẳng có phương trình d : x + a 1 = y + 2 2 = z + 3 2 và điểm A(1/2;1;1) Gọi ∆ là đường thẳng nằm trong mặt phẳng (α) , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/3
B. 7/2
C. 21 2
D. 3/2
Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ : x - 2 1 = y - 1 1 = z - 2 và vuông góc với mặt phẳng (β):x+y+2z+1=0. Khi đó giao tuyến của hai mặt phẳng (α), (β) có phương trình
A. x - 1 = y + 1 1 = z - 1
B. x 1 = y + 1 1 = z - 1 1
C. x - 2 1 = y + 1 - 5 = z 2
D. x + 2 1 = y - 1 - 5 = z 2
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng α : 2 x - y - 3 z + 10 = 0 và điểm M 2 ; - 2 ; 3 . Mặt phẳng P đi qua M và song song với mặt phẳng α có phương trình là:
A. P : 2 x - y - 3 z + 3 = 0
B. P : 2 x - y - 3 z - 3 = 0
C. P : 2 x - 2 y - 3 z + 3 = 0
D. P : 2 x - 2 y + 3 z - 15 = 0
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng α : 4 x - 3 y - 7 z + 3 = 0 và điểm I(1;-1;2). Phương trình mặt phẳng đối xứng với α qua I là
A. β : 4x - 3y - 7z - 3 = 0
B. β : 4x - 3y - 7z + 11 = 0
C. β : 4x - 3y - 7z - 11 = 0
D. β : 4x - 3y - 7z + 5 = 0
Trong không gian Oxyz, cho hai mặt phẳng P : x - 3 y + 2 z - 1 = 0 ; Q : x - z + 2 = 0 . Mặt phẳng α vuông góc với cả (P) và (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của α là:
A. x + y + z - 3 = 0
B. x + y + z + 3 = 0
C. - 2 x + z + 6 = 0
D. - 2 x + z - 6 = 0
Trong không gian với hệ tọa độ Oxyz cho điểm M 1 ; 0 ; 6 và mặt phẳng α có phương trình là x + 2 y + 2 z − 1 = 0 . Viết phương trình mặt phẳng β đi qua M và song song với α
A. β : x + 2 y + 2 z + 13 = 0.
B. β : x + 2 y + 2 z − 15 = 0.
C. β : x + 2 y + 2 z − 13 = 0.
D. β : x + 2 y + 2 z + 15 = 0.