Những câu hỏi liên quan
KL
Xem chi tiết
H24
30 tháng 8 2021 lúc 21:52

a) \(9x^2-6x+11=\left(3x\right)^2-2.3x+1+10=\left(3x-1\right)^2+10>0\forall x\)

b) \(3x^2-12x+81=3.\left(x^2-4x+9\right)=3.\left(x-2\right)^2+15>0\forall x\)

c) \(5x^2-5x+4=5.\left(x^2-x+\dfrac{4}{5}\right)=5.\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{20}\right)=5.\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

d) \(2x^2-2x+9=2.\left(x^2-x+\dfrac{9}{2}\right)=2.\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}>0\forall x\)

Bình luận (0)
RH
30 tháng 8 2021 lúc 21:53

a) = (3x-1)^2+10

Do (3x-1)^2>=0 với mọi x

--> (3x-1)^2+10>0 với mọi x

Bình luận (0)
LL
30 tháng 8 2021 lúc 21:53

a) \(9x^2-6x+11=\left(3x-1\right)^2+10\ge10>0\)

b) \(3x^2-12x+81=3\left(x-2\right)^2+69\ge69>0\)

c) \(5x^2-5x+4=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

d) \(2x^2-2x+9=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}\ge\dfrac{17}{2}>0\)

Bình luận (0)
BN
Xem chi tiết
NN
24 tháng 6 2023 lúc 21:35

`A=x^2 -4x+18`

`=x^2 -4x+4+14`

`=(x-2)^2 +14`

Có `(x-2)^2 >=0 AAx`

`=> (x-2)^2 +14>= 14>0 AAx`

Vậy ....

`B=x^2 -x+2`

`=x^2 -x+1/4+7/4`

`=(x-1/2)^2 +7/4`

có `(x-1/2)^2 >=0 AAx`

`=> (x-1/2)^2 +7/4>=7/4>0 AAx`

Vậy ...........

`C=x^2 +2y^2 -2xy-2y+15`

`=x^2 -2xy+y^2 +y^2 -2y+1+14`

`=(x-y)^2 +(y-1)^2 +14`

Có `(x-y)^2 >=0 AAx,y` ;   `(y-1)^2 >=0 AAy`

`=>(x-y)^2 +(y-1)^2 +14 >=14>0 AAx;y`

Vậy

Bình luận (1)
MV
Xem chi tiết
AM
9 tháng 7 2018 lúc 16:24

\(A\left(x,y\right)=x^2-2xy+y^2+4x^2-4xy+3\)

\(A\left(x,y\right)=5x^2-6xy+y^2+3\)

\(A\left(x,y\right)=2x^2+3x^2-6xy+y^2+3\)

\(A\left(x,y\right)=2x^2+\left(3x-y\right)^2+3\)

Ta thấy: \(2x^2\ge0\forall x\)

             \(\left(3x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow2x^2+\left(3x-y\right)^2+3\ge0\forall x,y\)

KL: Vậy biểu thức A luôn nhận giá trị dương.

\(B\left(x\right)=3x^2-5x+6\)

\(B\left(x\right)=3x^2-5x+\frac{5}{6}+\frac{31}{6}\)

\(B\left(x\right)=3x^2-5x+\left(\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\)

\(B\left(x\right)=\left(3x-\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\)

Ta thấy: \(\left(3x-\frac{5}{6}\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\ge0\forall x\)

vậy biểu thức B luôn nhận giá trị dương.

Bình luận (0)
NQ
Xem chi tiết
NA
17 tháng 8 2016 lúc 11:08

A=(x-3)(x-5)+2=x^2-5x-3x+15+2=x^2-8x+17=x^2-8x+16+1=(x-4)^2+1>0

B=x^2-5x+7=x^2-5/2*2x+(5/2)^2-(5/2)^2+7=(x-5/2)^2+3/4>0

C=x^2-xy+y^2=x^2-1/2*2xy+1/4y^2-1/4y^2+y^2=(x-1/2y)^2+3/4y^2>0

Bình luận (0)
H24
17 tháng 8 2016 lúc 11:40

A=(x-3)(x-5)+2

=x2-8x+15+2

=x2-8x+16+1

=(x-4)2+1

vì (x-4)2 lớn hơn hoặc = 0 nên (x-4)2+1 dương 

Bình luận (0)
NN
Xem chi tiết
NT
8 tháng 8 2023 lúc 14:03

a: A=-2(x^2-5/2x+2)

=-2(x^2-2*x*5/4+25/16+7/16)

=-2(x-5/4)^2-7/8<=-7/8<0 với mọi x

b: B=x^2+5x+25/4+3/4

=(x+5/2)^2+3/4>=3/4>0 

=>B luôn dương với mọi x

c: C=x^2-20x+100+1

=(x-10)^2+1>=1>0 với mọi x

=>C luôn dương với mọi x

Bình luận (0)
NA
Xem chi tiết
NT
7 tháng 10 2021 lúc 22:02

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)

Bình luận (1)
H24
Xem chi tiết
KR
28 tháng 9 2023 lúc 22:00

`#3107.\text {DN}`

a)

\((2x-3)^2-x(3-x)+5x-4x^2+17\)

`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`

`= x^2 - 10x + 26`

b)

`M = x^2 - 10x + 26`

`= [(x)^2 - 2*x*5 + 5^2] + 1`

`= (x - 5)^2 + 1`

Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`

Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.

Bình luận (0)
TK
Xem chi tiết
LD
13 tháng 10 2020 lúc 6:24

A = ( x - 5 )( x2 + 5x + 25 ) - x3 + 2 ( đã sửa )

= x3 - 53 - x3 + 2

= x3 - 125 - x3 + 2

= -123 ( không phụ thuộc vào biến )

=> đpcm

B = ( 2x + 3 )( 4x2 - 6x + 9 ) - 8x( x2 + 2 ) + 16x + 5

= ( 2x )3 + 33 - 8x3 - 16x + 16x + 5

= 8x3 + 27 - 8x3 - 16x + 16x + 5

= 27 + 5 = 32 ( không phụ thuộc vào biến )

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NL
13 tháng 10 2020 lúc 12:53

\(A=\left(x-5\right)\left(x^2+5x+25\right)-x^3+2\)

\(=x^3-125-x^3+2\)

\(=-123\left(đpcm\right)\)

\(B=\left(2x+3\right)\left(4x^2-6x+9\right)-8x\left(x^2+2\right)+16x+5\)

\(=8x^3+27-8x^3-16x+16x+5\)

\(=32\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
Xem chi tiết
LC
27 tháng 6 2016 lúc 16:58

x^2-x+1/4+3/4

=[x-1/2]^2+3/4>0

Vay....

2 câu kia tương tự nha

Bình luận (0)