Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh;
a)\(\frac{ma+nc}{mb+nd}=\frac{pa+qc}{pb+qd}\) b) \(\frac{ma+nb}{mc+nd}=\frac{pa+qb}{pc+qd}\)
c)\(\frac{ma+nc}{pa+qc}=\frac{mb+nd}{pb+qd}\) d) \(\frac{ma+nb}{pa+qb}=\frac{mc+nd}{pc+qd}\)
CÁC BÀI TẬP DẠNG CHỨNG MINH TỈ LỆ THỨC
BÀI 1: Cho \(\frac{a}{b}=\frac{b}{d}\)Chứng minh \(\frac{a^2+b^2}{b^2+d^2}\)=\(\frac{a}{d}\)
Bài 2: Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh \(\left(\frac{â+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài 3: Cho \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\) Chứng minh \(\frac{\left(a-c\right)^2}{\left(a-b\right).\left(b-c\right)}=4\)
a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
a)
i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)
\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)
\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)
\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)
Chúc bạn học tốt!
a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
Lời giải:
a)
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$
i. Khi đó:
$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$
$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$
Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)
ii.
$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$
$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$
Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)
b)
Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$
$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$
$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.
Lời giải:
a)
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$
i. Khi đó:
$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$
$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$
Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)
ii.
$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$
$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$
Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)
b)
Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$
$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$
$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.
1/ Biết \(\frac{a}{b}=\frac{c}{d}\), chứng minh
a) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\left(\frac{a-d}{c-b}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
2/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\)
3/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh a=b=c
Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé
Bài 1:
a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
CM : a = b = c
Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
vì \(a+b+c\ne0\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Do đó : \(a=b=c\).
Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)
Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)
\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\frac{5a+3b}{5a-3b}\) \(=\frac{5c+3d}{5c-3d}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài 1
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)
Vậy .....
Bài 2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)
Vậy .....
Chúc bạn học tốt!
a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
a)
i) theo đề ta có ad=bc
ta có a(c+d) = ac+ad
ta có (a+b)c = ac+bc
mà ad = bc
\(\frac{a}{a+b}=\frac{c}{c+d}\)
các bạn ơi mình không hiểu sao câu ii mình ra thế này
ii) đặt \(\frac{a}{b}=\frac{c}{d}=m\)\(\Rightarrow\)a=mb ; c=dm
Ta có \(\frac{a-b}{c-d}\)= \(\frac{mb-b}{md-d}\)=\(\frac{b\left(m-1\right)}{d\left(m-1\right)}\)=\(\frac{b}{d}\)
Ta có \(\frac{a+c}{b+d}\)=\(\frac{mb+md}{b+d}\)=m
1) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{a-c}{b-d}\left(b,d\ne0\right)\)
2) Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(a-b\ne0;c-d\ne0\right)\)
bạn áp dụng dãy tỉ số bằng nhau là xong
1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)
2) ta có \(\frac{a}{b}=\frac{c}{d}\)
đặt a=kb và c=kd
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
a/Cho biết \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\).Chứng minh rằng \(\frac{a}{b}\)=\(\frac{c}{d}\)
b/Cho biết (a+b+c+d)(a-b-c-d)=(a-b+c-d)(a+b-c-d) Chứng minh rằng \(\frac{a}{b}\)=\(\frac{c}{d}\)
Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a}{b}=\frac{c}{d}\) nếu khố hiểu thì bạn chứng mình kiểu này :
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho \(\frac{a}{b}\) = \(\frac{c}{d}\) chứng minh :
a) \(\frac{a^2 + b^2}{c^2 + d^2}\) = \(\frac{a*b}{c*d}\)
b) \(frac{(a + b)^2}{(c + d)^2}\) = \(\frac{a*b}{c*d}\)
a,Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) chứng minh:
I,\(\frac{a}{a+b}=\frac{c}{c+d}\) II,\(\frac{a-b}{c-d}=\frac{a+c}{b+d}\)
b,Cho\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)chứng minh \(\frac{a}{b}=\frac{c}{d}\)