Tinh cách hợp lý
A= 1/90 —1/72—1/56 —1/42 —1/30—1/20—1/12—1/6—1/2
Ta đặt A=\(-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(\Rightarrow A=-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)= \(-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
= - \(\left(1-\dfrac{1}{10}\right)=-\left(\dfrac{10-1}{10}\right)=-\dfrac{9}{10}\)
Ta có: \(-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=-\left(\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}\right)\)
\(=-\left(-\dfrac{1}{10}+1\right)\)
\(=-\left(1-\dfrac{1}{10}\right)\)
\(=-\left(\dfrac{10}{10}-\dfrac{1}{10}\right)=-\dfrac{9}{10}\)
tính bằng cách hợp lí : C= 8/90 -1/72 -1/56 -1/42 -1/30 -1/20 -1/12 -1/6 -1/2
\(C=\frac{8}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{90}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{4}{45}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{4}{45}-\left(1-\frac{1}{9}\right)=\frac{4}{45}-\frac{8}{9}=\frac{4}{45}-\frac{40}{45}=\frac{-36}{45}=\frac{-4}{5}\)
A=1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
Tính bằng cách hợp lý
bn vào link này nhé:https://olm.vn/hoi-dap/detail/49652619071.html
A = \(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
= \(\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\right)\)
= \(\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}\right)\)
= \(\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
= \(\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
= \(\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
= \(\frac{1}{90}-\frac{8}{9}\)
= \(-\frac{79}{90}\)
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(A=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(A=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(A=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(A=\frac{1}{90}-\frac{8}{9}\)
\(A=\frac{1}{90}-\frac{80}{90}\)
\(A=-\frac{79}{90}\)
Nguồn :Câu hỏi của Nguyễn Thị Bích Vân - Toán lớp 7 - Học toán với OnlineMath
_Minh ngụy_
Thực hiện phép tính sau một cách hợp lí:
-1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 -1/12 - 1/6 - 1/2
Ta có: -1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= (-1).(1/90 + 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
= (-1).(1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90)
= (-1).(1/1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10)
= (-1).(1 - 1/10)
= (-1).(9/10)
= -9/10
1)Tinh 9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)=\dfrac{9}{10}-\dfrac{9}{10}=0\)
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-...-\dfrac{1}{6}-\dfrac{1}{2}=-\left(-\dfrac{9}{10}+\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+...+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=-\left(-\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=-\left(-\dfrac{9}{10}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=-\left(-\dfrac{9}{10}+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=-\left(-\dfrac{9}{10}+1-\dfrac{1}{10}\right)=-\left(-\dfrac{9}{10}+\dfrac{9}{10}\right)=0\)
Ta có :
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{9.10}+\dfrac{1}{9.8}+\dfrac{1}{7.6}+\dfrac{1}{6.5}+\dfrac{1}{5.4}+\dfrac{1}{4.3}+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+..........+\dfrac{1}{2}-\dfrac{1}{1}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}-\dfrac{9}{10}=0\)
Tính bằng cách hợp lý
A, 5,4 + 6,5 + 7,6 + 8,7 - 4,4 - 5,5 - 6,6 - 7,7
B, 1/2+ 1/6 + 1/12 + 1/20+1/30+1/42+1/56+1/72+1/90
a) = ( 5,4 - 4,4 ) + ( 6,5 - 5,5 ) + ( 7,6 - 6,6 ) + ( 8,7 - 7,7 )
= 1 + 1 + 1 + 1
= 4
b) = 9/10
tính bằng cách thuận tiện:1/2+ 1/6+ 1/12+ 1/20 +1/30+ 1/42+ 1/56 +1/72+ 1/90
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Tính: B=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
Thực hiện phép tính một cách hợp lý:
A= -1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2