Cho biểu thức B=\(\frac{a+3}{a-2}\)trong đó a thuộc Z; a khác 2
Tìm các giá trị của số nguyên a để biểu thức B có giá trị là số nguyên
Cho biểu thức A = \(\frac{1-2x}{x+3}\). Tìm x thuộc để biểu thức A thuộc Z và tìm giá trị đó của A
\(A=\frac{1-2x}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
Vậy để A nguyên thì: \(x+3\inƯ\left(7\right)\)
Mà Ư(7)={1;-1;7;-7}
=>x+3={1;-1;7;-7}
Ta có bảng sau:
x+3 | 1 | -1 | 7 | -7 |
x | -2 | -4 | 4 | -10 |
Vậy x={-10;-4;-2;4}
Ta có:
\(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-\frac{2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
Để \(A\in Z\Leftrightarrow\frac{7}{x+3}\in Z\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
Các giá trị A nguyên tương ứng là: 5; -9; -1; -3
Vậy \(\begin{cases}x=-2\\A=5\end{cases}\); \(\begin{cases}x=-4\\A=-9\end{cases}\); \(\begin{cases}x=4\\A=-1\end{cases}\); \(\begin{cases}x=-10\\A=-3\end{cases}\)
Cho biểu thức: B= \(\frac{2a^2-a^2}{a+3}\left[\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right]\)
a) Rút gọn B
b) Tìm giá trị của a sao cho B=1
c) Khi nào B có giá trị dương, âm
d)Tìm a thuộc Z, B thuộc Z
e)Tìm giá trị nhỏ nhất, lớn nhất của B với a thuộc Z, a khác -3
Cho biểu thức
\(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
a)Rút gọn B
b)Tìm x thuộc Z để B thuộc Z
a) Điều kiện : \(x\ne2;x\ne3\)
\(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)
\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)
b) Điều kiện \(x\in Z;x\ne2;x\ne3\)
Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên
\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)
mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)
cho biểu thức P = \(\frac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\frac{\sqrt{a}+3}{\sqrt{a}-2}+\frac{2\sqrt{a}+1}{3-\sqrt{a}}\)đk a >= 0 ; a khác 4 và 9
a, rút gon P
b, tìm a thuộc Z để P thuộc Z
Cho biểu thức :
A=
a, Rút gọn biểu thức A
b, Tìm x để A>0
c, Tìm x thuộc Z để biểu thức a có giá trị là số nguyên dương
a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
=\(\frac{x-4}{x-2}\)
b. Để A >0 thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)
Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)
c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)
Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0,1,3,4\right\}\)
Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)
Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)
Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)
Cho biểu thức \(A=\frac{x^3+2x^2+x}{x^3-x}\)
a,Tìm điều kiện của x để biểu thức A xác định
b,Rút gọn biểu thức A
c, Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
cho biểu thức: A=\(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\) ( x >= 0; x khác 4)
a, Rút gọn A
b, Tìm A biết x = 4 - 2√3
c, Tìm x thuộc Z để A thuộc Z
a.
\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
b. Ta có
\(\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
Thay vào A ta được
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+2}\\ =\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}\\ =\frac{\sqrt{3}-3}{\sqrt{3}+1}\\ =\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\\ =\frac{6-4\sqrt{3}}{2}=3-2\sqrt{3}\)
c. \(A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)
Để \(A\in Z\Leftrightarrow4⋮\sqrt{x}+2\Leftrightarrow\sqrt{x}+2\inƯ\left(4\right)\)
Ta thấy \(\sqrt{x}\ge0\forall x\ge0\left(ĐK\right)\Leftrightarrow\sqrt{x}+2\ge2\)
Nên \(\sqrt{x}+2\in\left\{2;4\right\}\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=2\\\sqrt{x}+2=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)
Vậy x=0 thì A thuộc Z
Cho biểu thức A=\(\frac{1}{15}.\frac{225}{x+2}+\frac{3}{14}+\frac{196}{3x+6}\left(x\in Z;x\ne2\right)\)
a) rút gon A
b) tìm x thuộc Z để Acó giá trị nguyên
Cho biểu thức
\(\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{x^2-4}\)
a Rút gọn A
b,Tìm x thuộc Z để A thuộc Z
a) Ta có: A= \(\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{x^2-4}\)
A = \(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2-x\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12-10x}{\left(x-2\right)\left(x+2\right)}\)
A = \(\frac{x^2+2x-x^2+4x-4+12-10x}{\left(x-2\right)\left(x+2\right)}\)
A = \(\frac{-4x+8}{\left(x-2\right)\left(x+2\right)}\)
A = \(\frac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{4}{x+2}\)
b) ĐKXĐ: x \(\ne\) \(\pm\)2
Để A \(\in\)Z <=> \(-\frac{4}{x+2}\in Z\) <=> -4 \(⋮\)x + 2
<=> x + 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2(ktm) | -6 |
a) Rút gọn:
\(A=\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{x^2-4}\)
\(A=\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{\left(x-2\right).\left(x+2\right)}\)
\(A=\frac{x.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(2-x\right).\left(x-2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{12-10x}{\left(x-2\right).\left(x+2\right)}\)
\(A=\frac{x^2+2x}{\left(x-2\right).\left(x+2\right)}+\frac{2x-4-x^2+2x}{\left(x-2\right).\left(x+2\right)}+\frac{12-10x}{\left(x-2\right).\left(x+2\right)}\)
\(A=\frac{x^2+2x}{\left(x-2\right).\left(x+2\right)}+\frac{4x-4-x^2}{\left(x-2\right).\left(x+2\right)}+\frac{12-10x}{\left(x-2\right).\left(x+2\right)}\)
\(A=\frac{x^2+2x+4x-4-x^2+12-10x}{\left(x-2\right).\left(x+2\right)}\)
\(A=\frac{8-4x}{\left(x-2\right).\left(x+2\right)}\)
\(A=\frac{4.\left(2-x\right)}{\left(x-2\right).\left(x+2\right)}\)
\(A=\frac{4}{x+2}.\)
Chúc bạn học tốt!
a) \(\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{x^2-4}\)
=\(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2-x\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12-10x}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{x\left(x+2\right)+\left(2-x\right)\left(x-2\right)+12-10x}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{x^2+2x+2x-4-x^2+2x+12-10x}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{-4x+8}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{-4}{x+2}\)
b)(ĐKXĐ của A là x\(\ne\pm2\))
Với x\(\ne\pm2\) ta có:
A\(\in Z\)
\(\Leftrightarrow\frac{-4}{x+2}\in Z\)
\(\Rightarrow x+2\inƯ_{\left(-4\right)}=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau :
x+2 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -6 | -4 | -3 | -1 | 0 | 2 |
NX | tm | tm | tm | tm | tm | loại |
Vậy để \(A\in Z\) thì x = {-6,-4,-3,-1,0}