giải phương trình với a,b là hằng số : a.(ax+b)=b2.(x-1)
Giải bất phương trình với a,b là các hằng số( a khác 0).
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)
<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)
Giờ biện luận theo a và b thôi
Giải và biện luận phương trình sau:
1. ax2 - ab = b2(x - 1)
2. a(ax + b) = b2(x - 1)
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)
Giải bất phương trình với a là hằng số x + 1 a + a x > x + 2 a - 2 x
Điều kiện xác định: a ≠ 0.
Ta có:
⇔ x( a + 2 ) > 1/a ( 1 )
+ Nếu a > - 2,a ≠ 0 thì nghiệm của bất phương trình là
+ Nếu a < - 2 thì nghiệm của bất phương trình là
+ Nếu x = - 2 thì ( 1 ) có dạng 0x > - 1/2 luôn đúng với ∀ x ∈ R
Cho biêt a là hằng số. giải các phương trình sau:
a) x(x+3) +a(a-3) =2(ax-1)
b) x^2+7x-a^2+a+12=0
cho biết a là hằng số giải phương trình sau
x (x+3) + a (a-3) = 2 (ax-1)
Với điều kiện nào của a thì phương trình ax + b = 0 là một phương trình bậc nhất? (a và b là hai hằng số).
Với điều kiện a ≠ 0 thì phương trình ax + b = 0 là một phương trình bậc nhất.
Có bao nhiêu cặp số nguyên (a;b) với a , b ∈ 0 ; 10 để phương trình x 2 + a x + b 2 + a x 2 + a x + b + b = x có bốn nghiệm thực phân biệt.
A.33
B. 32
C. 34
D. 31
Với điều kiện nào của a thì phương trình ax + b = 0 là một phương trình bậc nhất ? (a và b là hai hằng số ).
với a khác 0 thì ax + b = 0 là phương trình bậc nhất 1 ẩn
Giải phương trình
a( ax + 1) = x(a + 2) + 2 ( a là hằng số ) theo a
giải giùm nha
a( ax + 1) = x(a + 2) + 2
<=>a2x+a=xa+2x+2
<=>a2x-xa-2x=2-a
<=>x.(a2-a-2)=2-a
<=>x=\(\frac{2-a}{a^2-a-2}=\frac{-\left(a-2\right)}{a^2-2a+a-2}=\frac{-\left(a-2\right)}{a.\left(a-2\right)+\left(a-2\right)}=\frac{-\left(a-2\right)}{\left(a-2\right)\left(a+1\right)}=\frac{-1}{a+1}\)