Chứng tỏ rằng đa thức:
A=(x^2+1)^4+9(x^2+1)^3+21(x^2+1)^2-x^2-31 luôn không âm với mọi x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A= (x^2+1)^4+ 9(x^2+1)^3+ 21(x^2+1)^2- x^2-31. Chứng minh rằng A luôn luôn không âm với mọi giá trị của biến.
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
Ta thấy \(x^2+1\ge1>0\forall x\)
\(\Rightarrow\left(x^2+1\right)^2\ge\left(x^2+1\right)\forall x\ge0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x^2+1\right)\ge0\)
\(\Rightarrow A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+20\left(x^2+1\right)^2+\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
\(\ge1^4+9.1^4+20.1^2+0-30=0\)
\(\Rightarrow Min.A=0\Leftrightarrow x^2+1=1\Leftrightarrow x=0\)
Vậy A luôn không âm với mọi giá trị của biến.
Chứng minh rằng :
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-31\)
Luôn luôn không âm với mọi giá trị của x
Đặt x2+1=a(a\(\ge1\))
=> A= a4+9a3+21a2-a-30
=(a-1)(a3+10a2+31a+30)
Do a\(\ge1\)=>\(\hept{\begin{cases}a-1\ge0\\a^3+10a^2+31a+30>0\end{cases}}\)
=> A\(\ge0\)(ĐPCM)
Chứng tỏ rằng đa thức A=(x2+1)4+9(x2+1)3+21(x2+1)2-x2-31 luôn không âm với mọi giá trị của biến x.
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-1-30\)
\(=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
\(=\left(x^2+1-1\right)\left(x^2+1+2\right)\left(x^2+1+3\right)\left(x^2+1+5\right)\)
\(=x^2\cdot\left(x^2+3\right)\left(x^2+4\right)\left(x^2+6\right)>=0\forall x\)
Chứng tỏ rằng đa thức A=(x2+1)4+9(x2+1)3+21(x2+1)2-x2-31 luôn luôn không âm với mọi giá trị của biến x.
C minh
(x^2 + 1)^4 + 9(x^2 + 1)^3 + 21(x^2 + 1)^2 - x^2 - 31 luôn không âm
chứng minh rằng A= (x2+1)2+9(x2+1)2+21(x2+1)2-x2-31 luông không âm với mọi x
Cho biểu thức A= ( x2 +1 )4 +9( x2 +1 )3 + 21( x2 +1 )2 - x2 -31. CMR : A luôn không âm với mọi x
Chứng tỏ rằng đa thức :
A = (x2 + 1)4 + 9(x2+1)3 + 21(x2 + 1)2 - x2 = 31 luôn không âm với mọi giá trị của biến
Cho 2 đa thức
P= \(x^3-2x^2y+x^2+1\)
Q=\(y^4-3x^3+2x^2y+2x^3+2\)
Chứng tỏ rằng trong hai đa thức P, Q luôn tồn tại một đa thức nhận giá trị không âm với mọi số thực x, y.
Giúp với.