Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

ND

Chứng tỏ rằng đa thức:

A=(x^2+1)^4+9(x^2+1)^3+21(x^2+1)^2-x^2-31 luôn không âm với mọi x

LK
29 tháng 7 2016 lúc 15:15

Ta có

A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30

Trong đó với mọi x:

x^2+1>=1,

(x^2+1)^3>=1,

21(x^2+1)^2>=21,

9(x^2+1)>=9

Nên

(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]>=30

Tương đương

A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30>=0 (đpcm)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
PH
Xem chi tiết
SX
Xem chi tiết
CP
Xem chi tiết
LH
Xem chi tiết
HC
Xem chi tiết
DD
Xem chi tiết
DY
Xem chi tiết
H24
Xem chi tiết