Cho phân số A=2n+3/6n+4(n thuộc N) Với giá trị nào của n thì A rút gọn được
cho phân số A= 2n+3/ 6n+4 với n ϵ N. với giá trị nào của n thì A rút gọn được
gọi ƯC(2n+3;6n+4)=n
để A rút gọn được thì ƯC(2n+3;6n+4) = n( khác 1)
=>2n+3⋮n=>3(2n+3)⋮n=>6n+9⋮n
6n+4 ⋮n
=>6n+9-6n+4⋮n(vì cả 2 đều ⋮n)
=>5 ⋮n=>nϵƯ(5)={1;5;}
=>vì n phải khác 1 thì A mới rút gọn được
=>n = 5 thì A rút gọn được
Cho phân số A = 2n + 3 /6n + 4 (n ϵ N ). Với giá trị nào của n thì A rút gọn được
Gọi \(d=ƯC\left(2n+3;6n+4\right)\)
\(\Rightarrow3\left(2n+3\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow5⋮d\)
\(\Rightarrow\left[{}\begin{matrix}d=1\\d=5\end{matrix}\right.\)
- Với d=1 \(\Rightarrow\) 2n+3 và 6n+4 nguyên tố cùng nhau nên phân số A không rút gọn được (loại)
- Với \(d=5\Rightarrow2n+3⋮5\)
\(\Rightarrow2n+3=5k\)
\(\Rightarrow2\left(n-1\right)=5\left(k-1\right)\)
Do 2 và 5 nguyên tố cùng nhau
\(\Rightarrow n-1⋮5\)
\(\Rightarrow n-1=5m\)
\(\Rightarrow n=5m+1\)
Vậy với mọi số tự nhiên n có dạng \(n=5m+1\) (\(m\in N\)) thì A rút gọn được
Cho phân số A = 2n + 3 /6n + 4. Với giá trị nào của n thì A rút gọn được
\(đk:6n+4\ne0\Leftrightarrow n\ne\dfrac{2}{3}\)
Bài 15. Cho phân số A= 2n+ 3 / 6n +4 (n thuộc N) . Với giá trị nào của n thì A rút gọn được.
Bài 16. Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
A) 12/3n-1
b)2n+3/7
c)2n+5 / n-3
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
Cho phân số A = 2n+3/6n+2 với n thuộc số tự nhiên, với giá trị nào của n thì phân số A rút gọn được.mình đag cần gấp ạ
Cho A = 28 phần 2n + 1, với n thuộc N. Với giá trị nào của n thì A là phân số có thể rút gọn được.
tổng đài tư vấn có bằng chứng ko
ko có thì đừng nói
Cho phân số A= 2 n + 3/6 n + 4 (n thuộc N) Với giá trị nào của n thì A rút gọn được
19. Cho phân số A= \(\dfrac{63}{3n+1}\)(n thuộc N)
a) Với giá trị nào của n thì A rút gọn được?
b) Với giá trị nào của n thì A là số tự nhiên.
Tham khảo
https://khoahoc.vietjack.com/question/627390/cho-phan-so-a-63-3n-1-n-thuoc-n-a-voi-gia-tri-nao-cua-n-thi-a-rut-gon-duoc
1/ Chứng minh rằng hai phân số sau tối giản với mọi số tự nhiên n:
a/ \(\frac{n+1}{2n+3}\) b/ \(\frac{2n+3}{4n+8}\)c/ \(\frac{3n+2}{5n+3}\)
2/ Cho phân số A = \(\frac{63}{3n+1}\)(n thuộc N)
a/ Với giá trị nào của n thì A rút gọn được.
b/ Với giá trị nào của n thì A là số tự nhiên.
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).