Những câu hỏi liên quan
NQ
Xem chi tiết
KR
8 tháng 11 2023 lúc 22:33

`#3107.101107`

\(A=1+3+3^2+3^3+...+3^{101}\)

$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$

$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2)  + ... + 3^{99}(1 + 3 + 3^2)$

$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$

$A = 13(1 + 3^3 + ... + 3^{99})$

Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`

`\Rightarrow A \vdots 13`

Vậy, `A \vdots 13.`

Bình luận (1)
H24
8 tháng 11 2023 lúc 22:35

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)

Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)

nên \(A\vdots13\)

\(\text{#}Toru\)

Bình luận (1)
PT
Xem chi tiết
KL
23 tháng 12 2023 lúc 12:07

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

Bình luận (0)
DH
Xem chi tiết
MP
1 tháng 1 2024 lúc 15:31

Các số hạng trong tổng \(A\) đều chia hết cho \(3\) nên \(\Rightarrow A⋮3\)

Vậy \(A⋮3\)

Bình luận (0)
NB
1 tháng 1 2024 lúc 17:48

A=3+3^2+3^3+3^4+...+3^12

A=(3+3^2+3^3)+(3^4+3^5+3^6)+.....+(3^10+3^11+3^12)   (gộp nhóm)

A=3.(1+3+3^2)+3^4.(1+3+3^2)+......+3^10.(1+3+3^2)        (phân phối)

A=3.13+3^4.13+....+3^10.13

A=13.(3+3^4+....+3^10)

Vì 13⋮13

nên 13.(3+3^4+...+3^10)⋮13

=>A⋮13

Bình luận (0)
TL
1 tháng 1 2024 lúc 19:16

chia hết cho 13 hay 3 vậy bạn?(mink thấy sai sai)

Bình luận (0)
MY
Xem chi tiết
LN
25 tháng 9 2016 lúc 14:05

mình ko biết

Bình luận (0)
NH
5 tháng 2 2021 lúc 21:50

phải là chứng minh A chia hết cho 121

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
15 tháng 2 2017 lúc 4:12

Bình luận (0)
.
Xem chi tiết
HH
Xem chi tiết
H24
16 tháng 12 2021 lúc 22:21

\(A=1+3+3^2+3^3+...+3^{102}+3^{103}\)

\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{102}+3^{103}\right)\)

\(\Rightarrow A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)\)

\(\Rightarrow A=\left(1+3\right)\left(1+3^2+...+3^{102}\right)\)

\(\Rightarrow A=4\left(1+3^2+...+3^{102}\right)⋮4\)

Bình luận (0)
TH
Xem chi tiết
NM
24 tháng 11 2021 lúc 15:27

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\\ A=3\cdot4+3^3\cdot4+...+3^{89}\cdot4\\ A=4\left(3+3^3+...+3^{89}\right)⋮4\)

Bình luận (1)
LD
24 tháng 11 2021 lúc 15:53

A = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) + . . . + ( 3 89 + 3 90 )

A = 3 ( 1 + 3 ) + 3 3 ( 1 + 3 ) + . . . + 3 89 ( 1 + 3 )

A = 3 ⋅ 4 + 3 3 ⋅ 4 + . . . + 3 89 ⋅ 4

A = 4 ( 3 + 3 3 + . . . + 3 89 ) ⋮ 4

Bình luận (0)
NM
Xem chi tiết
NL
20 tháng 4 2018 lúc 21:15

\(A=3+3^2+3^3+3^4+.......+3^{100}\)

\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=3.40+.........+3^{97}.40\)

\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)

\(\Rightarrow A⋮40\)( 1 )

Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)

\(\Rightarrow A⋮120\)

Vậy \(A⋮120\)( ĐPCM )

Bình luận (0)
BN
Xem chi tiết
TP
29 tháng 12 2022 lúc 21:14

bạn hình như viết sai đề

 

Bình luận (0)